Application of Pulse Gas-Discharge Electroacoustic Transducer for Non-Destructive Testing

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This paper presents the results of a gas-discharge electro acoustic transducer of two configurations, operating on the basis of a pulsed discharge in air at atmospheric pressure. The influence of the electrode configuration on the acoustic characteristics of the transducer is considered. It is shown that a change in the volume of the discharge chamber and the inter electrode gap have a significant effect on the radiation intensity of the transducer. The features that arise when using open and closed type electro acoustic transducers in flaw detection problems are revealed. It is shown that an open type gas-discharge electroacoustic transducer is a sufficiently powerful broadband source of the excitation signal and has prospects for use in non-destructive testing. A closed type gas-discharge electroacoustic transducer has advantages when testing materials with special requirements for surface cleanliness or the magnitude of the applied external electric field.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Derusova

Tomsk Polytechnic University

Email: red@tpu.ru
Ресей, Tomsk

V. Nekhoroshev

Tomsk Polytechnic University; Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: nvo@lnp.hcei.tsc.ru
Ресей, Tomsk; Tomsk

V. Shpilnoy

Tomsk Polytechnic University

Email: vshpilnoy@list.ru
Ресей, Tomsk

A. Raut

Peoples’ Friendship University of Russia

Хат алмасуға жауапты Автор.
Email: amolvr23@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Kruglenya A.I. Non-destructive testing in the aerospace industry / Collection of materials of the VII International scientific and practical conference dedicated to Cosmonautics Day. In 3 volumes. Ed. Yu. Yu. Loginov; FGBOU VO “SibSU named after M.F. Reshetnev”. V. 2. Krasnoyarsk. 2021. P. 813—815. (In Rus.)
  2. Shcherbakov M.I. New aspects of using thermal non-destructive testing for various objects of the aviation industry / Proceedings of the III industry conf. on measuring technology and metrology for aircraft research. Zhukovsky: TsAGI named after N.E. Zhukovsky, 2018. P. 381—386. (In Russ.)
  3. Veshkin E.A., Satdinov R.A., Barannikov A.A. Modern materials for aircraft interior // Proceedings of VIAM. 2021. V. 9. Is. 103. P. 33—42. (In Russ.)
  4. Sagomonova V.A., Dolgopolov S.S., Tselikin V.V., Sorokin A.E. Study of the influence of an integrated vibration-absorbing layer on the properties of composite three-layer sound-and-heat-insulating sandwich panels // Proceedings of VIAM. 2020. V. 9. Is. 91. P. 87—95. (In Russ.)
  5. Solovieva O.V., Soloviev S.A., Shakurova R.Z. Review of modern ceramic cellular materials and composites used in heat engineering // News of universities. Problems of energy. 2023. V. 1. P. 82—104. (In Russ.)
  6. Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Study of the stress-strain state of a three-layer panel with a honeycomb core in the presence of internal defects // Bulletin of Tula State University. Technical sciences. 2022. V. 2. P. 675—684. (in Rus.)
  7. Yumashev V.M., Kuzelev N.R., Maklashevsky V.Ya. Integrated radiation control of products, layered and composite materials in industry, aviation and space technology // Control. Diagnostics. 2001. V. 5. P. 35—36. (In Rus.)
  8. Wandowski T., Mindykowski D., Kudela P., Radzienski M. Damage localization using contact and non-contact narrow frequency band elastic wave generation // Measurement. 2023. V. 221. Article number 113504.
  9. Lan Z., Saito O., Okabe Y. An insight on local defect resonance based on modal decomposition analysis: A two-dimensional case // Journal of Sound and Vibration. 2024. V. 596. Article number 118718.
  10. Seresini T., Sunetchiieva S., Pfeiffer H., Pfeiffer H., Glorieux Ch. Defect Detection in Carbon Fiber-Reinforced Plate by Imaging of Mechanical Nonlinearity-Induced Sideband Vibrations // Vibration. 2023. V. 6. Is. 4. P. 796—819.
  11. Solodov I., Kreutzbruck M. Local defect resonance of a through-thickness crack // Ultrasonics. 2021. Is. 118 (21). P. 106565. doi: 10.1016/j.ultras.2021.106565
  12. Solodov I., Kreutzbruck M. Mode matching to enhance nonlinear response of local defect resonance // Journal of Sound and Vibration. 2019. V. 461. P. 114916.
  13. Segers J., Hedayatrasa S., Poelman G., Paepegem W.V., Kersemans M. Nonlinear local wave-direction estimation for in-sight and out-of-sight damage localization in composite plates // NDT & E International. 2021.V. 119. P. 102412.
  14. Segers J., Hedayatrasa S., Poelman G., Paepegem W.V., Kersemans M. Robust and baseline-free full-field defect detection in complex composite parts through weighted broadband energy mapping of mode-removed guided waves // Mechanical Systems and Signal Processing. V. 151. 2021. P. 107360.
  15. Ultrasonic transducers, Technical notes / Olympus NDT. 2006.
  16. Schiller S., Hsieh C.K., Chou C., Khuri-yakub B. Novel high frequency air transducers // Review of progress in quantitative NDE. 1990. P. 795.
  17. Wang X.-Ch., Bai J.-X., Zhang T.-H., Sun Y., Zhang Y.-T. Comprehensive study on plasma chemistry and products in pulsed discharges under Martian pressure // Vacuum. 2022. V. 203. Article number 111200.
  18. Daschewski M., Kreutzbruck M., Prager J., Dohse E., Gaal M., Harrer A. Resonanzfreie Messung und Anregung von Ultraschall // Technisches Messen. 2015. V. 82. Is. 3. P. 156—66.
  19. Derusova D.A., Vavilov V.P., Nekhoroshev V.O., Shpil’noi V.Yu., Druzhinin N.V. Features of Laser-Vibrometric Nondestructive Testing of Polymer Composite Materials Using Air-Coupled Ultrasonic Transducers // Russian Journal of Nondestructive Testing. 2021. V. 57. P. 1060—1071.
  20. Derusova D.A., Nekhoroshev V.O., Shpil’noi V.Y., Vavilov V.P. Developing novel gas discharge emitters of acoustic waves in air for nondestructive testing of materials // Sensors. 2022. V. 22. Is. 23. No. 99056. P. 14.
  21. Derusova D.A., Vavilov V.P., Nekhoroshev V.O., Shpil’noi V.Y., Zuza D.A., Kolobova E.N. Analysis and NDT Applications of a Gas Discharge Electroacoustic Transducer // Russian Journal of Nondestructive Testing. 2024. V. 60. Is. 2. P. 119—131.
  22. Vavilov V.P. Infrared thermography and thermal control. Moscow: Spektr, 2009. 544 p. (In Russ.)
  23. Li W., Van Gool L., Chen L., Xu D. Visual recognition in rgb images and videos by learning from rgb-d data // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018. V. 40. Is 8. P. 2030—2036.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Simplified scheme of open-type (a) and closed-type (b) GEAPs, as well as photos of the corresponding return electrodes of open-type with a hole (c) and closed-type (d): 1 - point electrode; 2 - insulator; 3 - return current conductor; 4 - disc electrode (membrane); 5 - schematic position of the discharge channel

Жүктеу (341KB)
3. Fig. 2. Functional scheme of the laboratory unit for the study of the GEAT

Жүктеу (167KB)
4. Fig. 3. Detailed (a) and general (b) views of oscillograms of voltage on the gas-discharge gap

Жүктеу (351KB)
5. Fig. 4. Voltage amplitude required for the development of breakdown on the dielectric surface at different values of the interelectrode gap

Жүктеу (131KB)
6. Fig. 5. Vibration displacement signals on the membranes of the closed and open type GEAPs. During the experiment, the value of the interelectrode gap was 1 mm at the discharge channel volume of 80 mm3

Жүктеу (280KB)
7. Fig. 6. Amplitude-frequency spectra of closed- and open-type HEAPs measured in the frequency range from 100 Hz to 100 kHz. The diameter of the hole in the membrane of the open-type HEAP is 3 mm

Жүктеу (180KB)
8. Fig. 7. Vibration displacement amplitudes of the membrane surface at different volumes of the GEAT discharge chamber

Жүктеу (190KB)
9. Fig. 8. Dependence of the vibration displacement amplitude in the centre of a duralumin membrane with a 3 mm hole on the interelectrode gap of the GEAT

Жүктеу (177KB)
10. Fig. 9. Location of the GEAT and the investigated specimen with the model defect during the experiment

Жүктеу (214KB)
11. Fig. 10. Amplitude-frequency spectra of sample vibrations in the defect region and defect-free zone recorded using closed-type (a) and open-type (b) GEATs

Жүктеу (239KB)
12. Fig. 11. Vibrogram obtained during acoustic stimulation using a closed-type GEAT at a frequency of 9.8 kHz

Жүктеу (284KB)
13. Fig. 12. Vibrograms of a PMMA plate during acoustic stimulation using open-type GEATs recorded at the natural frequencies of plate oscillations: 1681 Hz (a); 2356 Hz (b); 4094 Hz (c); 6656 Hz (d), as well as resonance frequencies of the defect 10062 Hz (e); 20519 Hz (f)

Жүктеу (590KB)

© Russian Academy of Sciences, 2024