Thermal nondestructive testing of cracks in turbine blades by using ultrasonic stimulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of nondestructive testing (NDT) of a turbine blade made of a heat resistant alloy with a ceramic coating were obtained by using ultrasonic infrared (IR) thermography. The purpose of the study was to determine possibilities of this NDT technique in detecting cracks in the blade and the coating. Image processing was performed by using principal component analysis, which allows to underline defect indications in IR images. The obtained test results were in a good accordance with the results obtained by means of penetrants with a considerably shorter inspection time. Potentials of IR ultrasonic thermography in the detection of “kissing: cracks and cracks located in difficult to reach sites was demonstrated.

Full Text

Restricted Access

About the authors

A. O. Chulkov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: chulkovao@tpu.ru
Russian Federation, 634050 Tomsk, Lenin Av., 30

V. P. Vavilov

National Research Tomsk Polytechnic University

Email: chulkovao@tpu.ru
Russian Federation, 634050 Tomsk, Lenin Av., 30

O. M. Zhukov

UEC-Saturn PJSC

Email: chulkovao@tpu.ru
Russian Federation, 152903 Rybinsk, Lenin Av., 163

References

  1. Henneke E.G., Reifsnider K.L., Stinchcomb W.W. Thermography, An NDI method for damage detection // Journal of Metal. 1979. P. 11—15.
  2. Gleiter A., Riegert G., Zweschper Th., Busse G. Ultrasound Lock-In Thermography for Advanced Depth Resolved Defect Selective Imaging // Insight. 2007. V. 49. No. 5. P. 272—274.
  3. Mignogna R.B., Green R.E., Duke J., Henneke E.G., Reifsnider K.L. Thermographic Investigation of high-power ultrasonic heating in materials // Ultrasonics. 1981. V. 7. P. 159—163.
  4. Reifsnider K.L., Henneke E.G., Stinchcomb W.W. The Mechanics of Vibrothermography, Mechanics of Nondestructive Testing / Ed. W.W. Stinchcomb. New York: Plenum Press, 1980. P. 249—276.
  5. Favro L.D., Han X., Ouyang Z., Sun G., Sui H., Thomas R.L. IR Imaging of Cracks Excited by an Ultrasonic Pulse // Proc. SPIE “Thermosense-XXII”. 2000. V. 4020. P. 182—185.
  6. Han X., Li W., Zeng Z., Favro L.D., Thomas R.L. Acoustic chaos and sonic infrared imaging // Applied Physics Letter. 2002. V. 81. P. 3188—3190.
  7. Burke M.W., Miller W.O. Status of VibroIR at Lawrence Livermore National Laboratory / Proc. SPIE. “Thermosense-XXVI”. 2004. V. 5405. P. 313—321.
  8. Litvinenko O.V. Investigation of thermoacoustic phenomena in silicon samples / PhD thesis, 2003. 127 p. (in Russian).
  9. Umar M.Z., Vavilov V.P., Abdullah H., Ariffin A.K. Ultrasonic infrared thermography in nondestructive testing: A review // Russian Journal of Nondestructive Testing. 2016. V. 52. No. 4. P. 212—219.
  10. Vavilov V.P., Chulkov A.O., Derusova D.A. IR thermographic characterization of low energy impact damage in carbon/carbon composite by applying optical and ultrasonic stimulation // Proc. SPIE “Thermosense-XXXVI”. 2014. V. 9105. P. 91050J.
  11. Rizi A.S., Hedayatrasa S., Maldague X., Vukhanh T. FEM Modelling of Ultrasonic Vibrothermography of Damaged Plate and Qualitative Study of Heating Mechanisms // Infrared Physics & Technology. 2013. V. 61. P. 101—110.
  12. Pieczonka L., Szwedo M., Uhl T. Vibrothermography – Measurement System Development and Testing. Diagnostyka — Diagnostics and Structural Health Monitoring, 2011. V. 2. Is. 58. P. 61— 66.
  13. Vavilov V.P., Nesteruk D.A., Khorev V.S. Ultrasonic Infrared technique for detecting impact damage and fatigue cracks in metals and composites // In the NDT World. March 2010. V. 1 (47). P. 36—58 (in Russian).
  14. Shirayev V.V., Khorev V.S. Thermal NDT of impact damage in carbon reinforced plastic by applying ultrasonic stimulation // Control. Diagnostics. 2011 (special issue). P. 112—114 (in Russian).
  15. Shepard S.M., Ahmed T., Lhota J. Experimental Considerations in Vibrothermography // Proc. of SPIE. 2004. V. 5405. P. 332—335.
  16. Holland S.D., Uhl C., Renshaw J. Towards a viable strategy for estimating vibrothermographic probability of detection // Review of Quantitative Nondestructive Evaluation. 2008. V. 27. P. 491—497.
  17. Holland S.D. First Measurements from a New Broadband Vibrothermography Measurement System // Review of Quantitative Nondestructive Evaluation. 2007. V. 2. P. 478—483.
  18. Hiremath S.R., Mahapatra R., Srinivasan S. Detection of Crack In Metal Plate by Thermo Sonic Wave Based Detection Using FEM // JEST-M. 2012. V. 1. Is. 1. P. 12—18.
  19. Solodov I., Busse G. Resonance Ultrasonic Thermography: Highly Efficient Contact and Air-coupled Remote modes // Applied Physics Letters. 2013. V. 102. Is. 6. Id. 061905. 3 p.
  20. Pye C.J., Adams R.D. Detection of Damage in Fibre Reinforced Plastics Using Thermal Fields Generated During Resonant Vibration // NDT International. 1981. V. 14. Is. 3. P. 111—118.
  21. Ermolov I.N., Ghitis M.B., Korolev M.V. Ultrasonic transducers for nondestructive testing. Mashinostroyenie Publisher, Moscow. 1986. 280 p. (in Russian).
  22. Umar M.Z., Vavilov V.P., Abdullah H., Ariffin A.K. Detecting low-energy impact damages in carbon-carbon composites by ultrasonic infrared thermography // Rus. J. NDT. 2017. V. 53 (7). P. 530—538. doi: 10.1134/S1061830917070099.
  23. Umar M.Z., Vavilov V., Abdullah H., Ariffin A.K. Quantitative study of local heat sources by Ultrasonic Infrared Thermography: An approach for estimating total energy released by low energy impact damage in C/C composite // Composites Part B: Engineering. V. 165. 15 May 2019. P. 167—173.
  24. Naga V., Vakada N.R., Niranjan Kumar I.N., Prasad Katuru B., Madhulata N., Gurajarapu N. Failure mechanisms in turbine blades of a gas turbine engine — an overview // Intern. J. of Eng. Res. and Develop. August 2014. V. 10. Is. 8. P. 48—57.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (1MB)
3. Fig.2

Download (1MB)
4. Fig.3

Download (1MB)
5. Fig.4

Download (1MB)
6. Fig.5

Download (1MB)
7. Рис. 6. Результат термоакустического контроля лопатки турбины со стороны А при стимуляции в точке № 3: положение магнитостриктора при вводе УЗ колебаний (а); результат обработки последовательности термограмм методом АГК (б); трехмерное представление карты дефектов лопатки турбины (в).

Download (1MB)
8. Fig.7

Download (995KB)
9. Fig.8

Download (1MB)
10. Fig.9

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences