Theoretical investigations of temperature compensation of the results of the diagnosis of polymer composites by the method of two optical fiber

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers the advantages and disadvantages of existing methods for temperature compensation of data from fiber-optic sensors based on fiber Bragg gratings as part of an embedded system for simultaneous testing of deformation and temperature of polymer composite materials. It is shown that when external temperature testing is impossible, it is most expedient to implement the method of two optical fibers with different sensitivity to at least one of these parameters due to different dopants. Technological issues related to the formation of a spatial topology and the provision of an effective interrogation of the embedded optical system for monitoring polymer composite materials by the two-fiber method are considered. The results of theoretical researches of a linear model of temperature compensation, a model that takes into account the influence of cross sensitivity, as well as a quadratic model of temperature compensation of optical testing data are presented. It has been established that the linear model is the simplest, however, when using it, one should take into account the error associated with the inaccuracy of the approximation of optical inspection data by a linear function. At the same time, it is shown that in order to improve the quality and reliability of the results of optical testing, it is advisable to use a quadratic model of temperature compensation, which provides an error level comparable to the error of the fiber-optic sensor interrogator. The results obtained can be used to develop methods for the simultaneous testing of samples, as well as monolithic and three-layer structures from structural layered of polymer composite materials with limiting molding conditions (temperature not more than 180 °C, specific pressure not more than 0,7 MPa), as in the process of bench and other tests, and, in the future, in real operating conditions.

作者简介

M. Fedotov

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences;All-Russian public organization �Russian Academy of Engineering�

Email: fedotovmyu@gmail.com
Novosibirsk, Russia

参考

  1. Старцев В.О., Антипов В.В., Славин А.В., Горбовец М.А. Современные отечественные полимерные композиционные материалы для авиастроения (обзор) // Авиационные материалы и технологии. 2023. № 2 (71). С. 122-144. doi: 10.18577/2713-0193-2023-0-2-122-144
  2. Liu Guozeng, Gao Weicheng, Liu Tao. Debonds and Water-Filled Defects Detection in Honeycomb Sandwich Composites Based on Pulse Infrared Thermography NDT Technique // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 5. P. 583-591.
  3. Лю Г., Гао В., Лю В., Цзоу С., Сюй Ц., Лю Т. Контроль нарушений адгезии и дефектов, заполненных водой, в многослойных композитах с сотовым заполнителем методом импульсной инфракрасной томографии // Дефектоскопия. 2023. № 5. С. 45-53. doi: 10.31857/S0130308223050056
  4. Kaledin V.O., Vyachkina E.A., Vyachkin E.S., Budadin O.N., Kozel'skaya S.O. Applying Ultrasonic Thermotomography and Electric-Loading Thermography for Thermal Characterization of Small-Sized Defects in Complex-Shaped Spatial Composite Structures // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 1. P. 58-69. doi: 10.1134/S1061830920010052
  5. Goossens S., Berghmans F., Munoz K., Jiménez M., Karachalios E., Saenz-Castillo D., Geernaert T. A global assessment of barely visible impact damage for CFRP sub-components with FBG-based sensors // Composite Structures. 2021. V. 272. P. 1-12. doi: 10.1016/j.compstruct.2021.114025
  6. Datta A., Augustin M.J., Gupta N., Viswamurthy S.R., Gaddikeri K.M., Sundaram R. Impact localization and severity estimation on composite structure using fiber Bragg grating sensors by least square support vector regression // IEEE Sensors Journal. 2019. V. 19 (12). P. 4463-4470. doi: 10.1109/JSEN.2019.2901453
  7. Беловолов М.И., Беловолов М.М., Семенов С.Л., Будадин О.Н., Козельская С.О., Кутюрин Ю.Г. Разработка волоконно-оптических датчиков контроля технических характеристик и оценки работоспособности композитных узлов изделий авиационной и ракетно-космической техники (Обзор) // Конструкции из композиционных материалов. 2020. № 3 (159). С. 45-53.
  8. Анискович В. А., Будадин О. Н., Кутюрин Ю. Г., Разин А.Ф., Шаклеин А.Ф. Мониторинг напряженно-деформированного состояния изделий из композиционных материалов с использованием волоконно-оптических датчиков // Известия Российской академии ракетных и артиллерийских наук. 2018. № 4 (104). С. 126-133.
  9. Matveenko V.P., Kosheleva N.A., Serovaev G.S. Strain measurements by FBG-based sensors embedded in various materials manufactured by different technological processes // Procedia Structural Integrity: 4th, Virtual, Funchal, Madeira, 30 августа - 02 2021 года. V. 37. Virtual, Funchal, Madeira, 2021. P. 508-516. doi: 10.1016/j.prostr.2022.01.116
  10. Fedorov A.Y., Kosheleva N.A., Matveenko V.P., Serovaev G.S. Strain measurement and stress analysis in the vicinity of a fiber Bragg grating sensor embedded in a composite material // Composite Structures. 2020. V. 239. P. 111844. doi: 10.1016/j.compstruct.2019.111844
  11. Jeon S.-J., Park S.Y., Kim S.T. Temperature compensation of fiber bragg grating sensors in smart strand // Sensors. 2022. V. 22 (9). 17 p. doi: 10.3390/s22093282
  12. Jung J., Park N., Lee B. Simultaneous measurement of strain and temperature by use of a single fiber Bragg grating written in an erbium:ytterbium-doped fiber // Applied Optics. 2000. V. 39 (7). P. 1118-1120. doi: 10.1364/AO.39.001118
  13. Kuang Y., Guo Y., Xiong L., Liu W. Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey // Photonic Sensors. 2018. V. 8 (10). 12 p. doi: 10.1007/s13320-018-0504-y
  14. Yan W., Guo Z., Wang C., Zhang Y., Du G. Passive temperature compensation package for fiber Bragg grating // Proc. SPIE. 2006. V. 6150. doi: 10.1117/12.676531
  15. Guan B.O., Tam H.Y., Tao X.M., Dong X.Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating // IEEE Photonics Technology Letters. 2000. № 12-6. P. 675-677. doi: 10.1109/68.849081
  16. Chehura E., James S.W., Tatam R.P. Temperature and strain discrimination using a single tilted fibre Bragg grating // Optics communications. 2007. V. 275 (2). P. 344-347. doi: 10.1016/j.optcom.2007.03.043
  17. Frazao O., Melo M., Marques P.V.S., Santos J.L. Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination // Measurement science and technology. 2005. V. 16. P. 984-988. doi: 10.1088/0957-0233/16/4/010
  18. Sulejmani S., Sonnenfeld C., Geernaert, Berghmans F., Thienpont H., Eve S., Lammens N., Luyckx G., Voet E., Degrieck J., Urbanczyk W., Mergo P., Becker M., Bartelt H. Towards micro-structured optical fiber sensors for transverse strain sensing in smart composite materials // Sensors. 2011. IEEE. P. 109-112. doi: 10.1109/ICSENS.2011.6127305
  19. Федотов М.Ю. Особенности создания системы одновременного встроенного контроля деформации и температуры композитных конструкций волоконно-оптическими датчиками // Космические аппараты и технологии. 2023. Т. 7. № 1 (43). С. 24-34. doi: 10.26732/j.st.2023.1.03
  20. Федотов М.Ю. Методы формирования пространственной топологии и опроса волоконно-оптических датчиков для диагностики композитных конструкций // Контроль. Диагностика. 2023. Т. 26. № 4 (298). С. 24-37. doi: 10.14489/td.2023.04.pp.024-037
  21. Федотов М.Ю. Теоретические исследования встроенной волоконно-оптической системы контроля деформации и температуры полимерных композитов // Контроль. Диагностика. 2023. Т. 26. № 5 (299). С. 14-25. doi: 10.14489/td.2023.05.pp.014-025
  22. Sivanesan P., Sirkis J.S., Murata Y., Buckley S.G. Optimal wavelength pair selection and accuracy analysis of dual fiber grating sensors for simultaneously measuring strain and temperature // Opt. Eng. 2002. V. 41(10). P. 2456-2463.
  23. http://www.scipy.org
  24. Аксенова Е.Н., Гасников Н.К., Калашников Н.П. Методы оценки погрешностей результатов прямых и косвенных измерений в лабораториях физического практикума / Учебно-методическое пособие. М.: МИФИ, 2009. 24 с.
  25. Федотов М.Ю. Теоретические аспекты калибровки и оценки погрешностей волоконно-оптической системы диагностики полимерных композитов // Конструкции из композиционных материалов. 2023. № 2 (170). С. 43-51. doi: 10.52190/2073-2562_2023_2_43

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023