GASTROPOD STATOLITHS AND THEIR USE AS RECORDING STRUCTURES
- Authors: Khoroshutina O.A.1
-
Affiliations:
- Russian Federal Research Institute of Fisheries and Oceanography
- Issue: Vol 102, No 2 (2023)
- Pages: 123-140
- Section: ARTICLES
- URL: https://archivog.com/0044-5134/article/view/654188
- DOI: https://doi.org/10.31857/S0044513423020083
- EDN: https://elibrary.ru/HTLMDZ
- ID: 654188
Cite item
Abstract
In various invertebrate groups, the gravity perception organ (statocyst) includes receptor cells and inertial mass. In gastropods, inertial mass can be represented by both multiple statoconia and single statoliths. Statoliths are small paired formations which are generally roughly spherical in shape and consist of calcium carbonate polymorphic modifications (mostly aragonite). The present review examines gastropod statolith ontogeny, including the early stages of their formation, analyzes the process of statolith growth in different gastropod species, their structure and morphometric characteristics, features of their internal structure, and the chemical and mineralogical composition. Different types of emerging concentric marks (growth rings, hatching/settling rings, rings marking other ontogenetic events) on the statoliths, and the reasons for their formation are discussed. The advantages of using statoliths as recording structures are considered. Verification data concerning the formation of annual marks on statoliths are also analyzed.
Keywords
About the authors
O. A. Khoroshutina
Russian Federal Research Institute of Fisheries and Oceanography
Author for correspondence.
Email: olga.khoroshutina@gmail.com
Russia, 105187, Moscow, Okruzhnoj proezd, 19
References
- Асеев Н.А., Малышев А.Ю., Коршунова Т.А., Браваренко Н.И., Лемак М.С., Рощин М.В., Захаров И.С., Балабан П.М., 2013. Адаптация физиологической реакции органа равновесия к условиям микрогравитации: эксперименты на спутниках “Фотон” // Сенсорные системы. Т. 27. № 4. С. 327–337. EDN: PVCBTE
- Васильев А.Г., 2016. Совершенствование методов оценки состояния запасов и перспектив промысла трубачей Buccinum osagawai. Дис. … канд. биол. наук. М.: ВНИРО. 118 с.
- Винников Я.А., 1995. Гравитационные механизмы взаимодействия сенсорных систем у беспозвоночных в эволюционном аспекте // Авиакосмическая и экологическая медицина. Т. 29. № 1. С. 4–18. EDN: ZCHODN
- Винников Я.А., Газенко О.Г., Титова Л.К., Бронштейн А.А., Цирулис Т.П., Певзнер Р.А., Говардовский В.И., Грибакин Ф.Г., Иванов В.П., Аронова М.З., Чехонадский Н.А., 1971. Рецептор гравитации. Эволюция структурной, цитохимической и функциональной организации. Под ред. В.Н. Черниговского. Л.: Наука. Т. XII. 523 с.
- Голиков А.Н., 1980. Моллюски Buccinidae Мирового океана: Фауна СССР. Новая серия. Л.: Наука. Т. 5. Вып. 2. 508 с.
- Горбушин А.М., 2003. Строение и механизм образования линий зимней остановки роста на раковине Hydrobya ulvae (Gastropoda, Protobranchia) Белого моря // Зоологический журнал. Т. 72. Вып. 11. С. 29–34.
- Горгиладзе Г.И., Букия Р.Д., Давиташвили М.Т., 2010. Морфологические особенности статоконий в статоцистах наземной легочной улитки Helix lucorum // Бюллетень экспериментальной биологии и медицины. Т. 149. Вып. 2. С. 236–240. https://doi.org/10.1007/s10517-010-0924-1
- Горгиладзе Г.И., Носовский А.М., Букия Р.Д., 2013. Статолит Pomatias rivulare // Сенсорные системы. Т. 27. Вып. 3. С. 216–223. EDN: RCFKJL
- Горгиладзе Г.И., 2020. Пластичность инерциальной массы в органе равновесия в изменяющемся гравитационном поле // Сенсорные системы. Т. 34. Вып. 4. С. 267–282. https://doi.org/10.31857/S0235009220040022
- Догель В.А., 1954. Олигомеризация гомологичных органов как один из главных путей эволюции животных. Л.: Издательство Ленинградского университета. 368 с.
- Иванов В.П., Мамкаев Ю.В., Певзнер Р.А., 1972. Электронно-микроскопическое исcледование статоциста бескишечной турбеллярии Convoluta convoluta // Журнал эволюционной биохимии и физиологии. Т. 8 (2). С. 189–194.
- Клевезаль Г.А., Смирина Э., 2016. Регистрирующие структуры наземных позвоночных. Краткая история и современное состояние исследований // Зоологический журнал. Т. 95. С. 872–896. https://doi.org/10.7868/S0044513416080079
- Козминский Е.В., 2006. Определение возраста у Littorina obtusata (Gastropoda, Prosobranchia) // Зоологический журнал. Т. 85. С. 146–157. EDN: MPVQYL
- Косьян А.Р., Антипушина Ж.А., 2011. Определение индивидуального возраста Rapana venosa (Valenciennes, 1846) по динамике 18O в карбонатах раковины // Океанология. Т. 51. Вып. 6. С. 1082–1082.
- Мина М.В., Клевезаль Г.А., 1970. Принципы исследования регистрирующих структур // Успехи современной биологии. Т. 70. Вып. 3. С. 341–352. EDN: ONFUFR
- Овсянников В.П., Островский В.И., 2008. Закономерности роста брюхоногого моллюска Buccinum osagawai в северной части Охотского моря // Известия ТИНРО. Т. 154. С. 37–45.
- Санамян К.Э., Санамян Н.П., 2012. Новые находки мейобентосных гидроидов (Cnidaria: Hydrozoa) в дальневосточных морях России // Сохранение биоразнообразия Камчатки и прилегающих морей. Материалы ХIII междунар. науч. конф., посвящ. 75-летию со дня рождения известного отечественного специалиста в области лесоведения, ботаники и экологии, д.б.н. С.А. Дыренкова. Петропавловск-Камчатский: Камчатпресс. С. 102–109.
- Селин Н.И., 2003. Рост и продолжительность жизни брюхоногого моллюска Nucella heyseana (Gastropoda) из залива Петра Великого Японского моря // Биология моря. Т. 29. Вып. 2. С. 115–119. EDN: OUIPMP
- Хорошутина О.А., Лищенко Ф.В., 2018. Микроструктура статолитов трубачей (Buccinidae, Rafinesque, 1815) Дальневосточных морей России // Перспективы рыболовства и аквакультуры в современном мире. Материалы III научной школы молодых учёных и специалистов по рыбному хозяйству и экологии, посвященной 140-летию со дня рождения К.М. Дерюгина, Звенигород, 15–21 апреля 2018 года. Под ред. А.М. Орлова, И.И. Гордеева, А.А. Сергеева. Звенигород: Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии. С. 144.
- Хорошутина О.А., Лищенко Ф.В. 2022. Определение индивидуального возраста Rapana venosa (Valenciennes, 1846) с использованием статолитов // Современные проблемы и перспективы развития рыбохозяйственного комплекса: материалы X международной научно-практической конференции молодых ученых и специалистов. Под ред. И.И. Гордеева, А.С. Сафронова, А.А. Смирнова, К.К. Киввы, О.В. Воробьевой, Л.О. Архипова, О.А. Мазниковой, Е.В. Лаврухиной, А.А. Сумкиной. М.: Издательство ВНИРО. С. 211–216.
- Ambrose W.G., Locke W.L., Bigelow G.F., Renaud P.E., 2016. Deposition of annual growth lines in the apex of the common limpet (Patella vulgata) from Shetland Islands, UK and Norway: evidence from field marking and shell mineral content of annual line deposition // Environmental Archaeology. V. 21. P. 79–87. https://doi.org/10.1179/1749631414Y.0000000058
- Arkhipkin A.I., 2005. Statoliths as black boxes (life recorders) in squid // Marine and Freshwater Research. V. 56. P. 573–583. https://doi.org/10.1071/MF04158
- Arkhipkin A., Bizikov V., Doubleday Z., Laptikhovsky V., Lishchenko F., Perales-Raya C., Hollyman P., 2018. Techniques for Estimating the Age and Growth of Molluscs Cephalopoda // Journal of Shellfish Research. V. 37. P. 783–792. https://doi.org/10.2983/035.037.0409
- Barroso C.M., Nunes M., Richardson C.A., Moreira M.H., 2005. The gastropod statolith: a tool for determining the age of Nassarius reticulatus // Journal of the Marine Biological Association of the United Kingdom. V. 146. P. 1139–1144. https://doi.org/10.1007/s00227-004-1516-2
- Barroso C.M., Rato M., Veríssimo A., Sousa A., Santos J. A., Coelho S., Gaspar M.B., Maiad F., Galante-Oliveira S., 2011. Combined use of Nassarius reticulatus imposex and statolith age determination for tracking temporal evolution of TBT pollution in the NW Portuguese continental shelf // Journal of Environmental Monitoring. V. 13 (11). P. 3018–3025. https://doi.org/10.1039/C1EM10508F
- Bhattacharya C.G., 1967. A simple method of resolution of a distribution into Gaussian components // Biometrics. V. 23. P. 115–135.
- Beesley P.L., Ross G.J.B., Glasby C.J. (eds), 2000. Polychaetes and allies: the southern synthesis. Fauna of Australia. Vol. 4A: Polychaeta, Myzostomida, Pognophora, Echiura, Sipuncula. CSIRO publishing, Melbourne.
- Bell J.L., 1982. Daily increments in the statoliths of gastropod larvae: their use in age determination // American Zoologist. V. 22. P. 861.
- Bell J.L., 1983. Deposition of increments in the statoliths of gastropod larvae; effects of environmental conditions // American Zoologist. V. 23. P. 989.
- Bell J.L., 1984. Statoliths as age indicators in gastropod larvae: application to measurement of field growth rates // Pacific Science. V. 38. P. 357.
- Billings G.K., Ragland P.C., 1968. Geochemistry and mineralogy of the recent reef and lagoonal sediments south of Belize (British Honduras) // Chemical Geology. V. 3. P. 135–153. https://doi.org/10.1016/0009-2541(68)90006-5
- Bretos M., 1980. Age determination in the keyhole limpet Fissurella crassa Lamarck (Archaeogastropoda: Fissurellidae), based on shell growth rings // The Biological Bulletin. V. 159. P. 606–612. https://doi.org/10.2307/1540826
- Budelmann B.U., 1988. Morphological diversity of equilibrium receptor systems in aquatic invertebrates // Sensory biology of aquatic animals. Springer, New York. P. 757–782. https://doi.org/10.1007/978-1-4612-3714-3_30
- Campana S.E., 2005. Otolith science entering the 21st century // Marine and freshwater research. V. 56 (5). P. 485–495. https://doi.org/10.1071/MF04147
- Chase R., 2002. Behavior and its neural control in gastropod molluscs. New York: Oxford University Press. 281 p.
- Chatzinikolaou E., Richardson C., 2007. Evaluating growth and age of netted whelk Nassarius reticulatus (Gastropoda: Nassariidae) using statolith growth rings // Marine Ecology Progress Series. V. 342. P. 163–176. https://doi.org/10.3354/meps342163
- Clarke M.R., 1978. The cephalopod statolith – An introduction to its form // Journal of the Marine Biological Association of the United Kingdom. V. 58. P. 701–712. https://doi.org/10.1017/S0025315400041345
- Clarke M.R., Maul G.E., 1962. A description of the ‘scaled’ squid Lepidoteuthis grimaldi Joubin 1895 // Proceedings of the Zoological Society of London. V. 139. P. 97–118. https://doi.org/10.1111/j.1469-7998.1962.tb01824.x
- Dietzel M., Gussone N., Eisenhauer A., 2004. Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50°C // Chemical Geology. V. 203. P. 139–151. https://doi.org/10.1016/j.chemgeo.2003.09.008
- Ehlers U., 1997. Ultrastructure of the statocysts in the apodous sea cucumber Leptosynapta inhaerens (Holothuroidea, Echinodermata) // Acta Zoologica. V. 78. P. 61−68. https://doi.org/10.1111/j.1463-6395.1997.tb01127.x
- Epstein S., Buchsbaum R., Lowenstam H., Urey H.C., 1951. Carbonate Water Isotopic Temperature Scale // GSA Bulletin. V. 62 (4). P. 417–426.
- Espeel M., 1985. Fine structure of the statocyst sensilla of the mysid shrimp Neomysis integer (Leach, 1814) (Crustacea, Mysidacea) // Journal of Morphology. V. 186. P. 149−165. https://doi.org/10.1002/jmor.1051860203
- Fisher R.A., 2015. Age, growth, size at sexual maturity and reproductive biology of channeled whelk, Busycotypus canaliculatus, in the U.S. Mid-Atlantic. VIMS Marine Resource Report № 2015-15, VSG-15-09. 28 p.
- Fisher R.A., Rudders D.B., 2017. Population and reproductive biology of the channeled whelk, Busycotypus canaliculatus, in the US Mid-Atlantic // Journal of Shellfish Research. V. 36. P. 427–444. https://doi.org/10.2983/035.036.0215
- Fretter V., Graham A., 1994. British Prosobranch Molluscs: their functional anatomy and ecology. Revised and updated edition. London, printed for the Ray Society.
- Galante-Oliveira S., Marçal R., Ribas F., Machado J., Barroso C., 2013. Studies on the morphology and growth of statoliths in Caenogastropoda // Journal of Molluscan Studies. V. 79. P. 340−345. https://doi.org/10.1093/mollus/eyt028
- Galante-Oliveira S., Marçal R., Guimarães F., Soares J., Lopes J.C., Machado J., Barroso C., 2014. Crystallinity and microchemistry of Nassarius reticulatus (Caenogastropoda) statoliths: towards their structure stability and homogeneity // Journal of Structural Biology. V. 186. P. 292−301. https://doi.org/10.1016/j.jsb.2014.03.023
- Galante-Oliveira S., Marçal R., Espadilha F., Sá M., Abell R., Machado J., Barroso C., 2015. Detection of periodic Sr Ca−1cycles along gastropod statoliths allows the accurate estimation of age // Marine Biology. V. 162. P. 1473–1483. https://doi.org/10.1007/s00227-015-2684-y
- Galante-Oliveira S., Pereira A., Baptista T., Guimarães F., Soares J., Lopes J. C., Machado J., Barroso C., 2019. Morphology and Ontogeny of Statoliths in the Grooved Carpet Shell, Ruditapes decussatus // Microscopy and Microanalysis. V. 25 (1). P. 244–249. https://doi.org/10.1017/S143192761801245X
- Guy C., Reid N., Roberts D., 2013. Ageing of slipper limpet (Crepidula fornicata) shells from Belfast Lough // Irish Naturalist’s Journal. V. 32. P. 45–48.
- Hilbig R., Anken R. H., Rahmann H., 2003. On the origin of susceptibility to kinetotic swimming behaviour in fish: A parabolic aircraft flight study // Journal of Vestibular Research. V. 12 (4). P. 185–189.
- Hollyman P.R., 2017. Age, growth and reproductive assessment of the whelk, Buccinum undatum, in coastal shelf seas. PhD thesis, Bangor University. 404 p.
- Hollyman P.R., Chenery S.R.N., EIMF, Ignatyev K., Laptikhovsky V.V., Richardson C.A., 2017. Micro-scale geochemical and crystallographic analysis of Buccinum undatum statoliths supports an annual periodicity of growth ring deposition // Chemical Geology. V. 526. P. 153–164. https://doi.org/10.1016/j.chemgeo.2017.09.034
- Hollyman P., Leng M., Chenery S., Laptikhovsky V., Richardson C., 2017a. Statoliths of the whelk Buccinum undatum: a novel age determination tool // Marine Ecology Progress Series. V. 598. P. 261–272. https://doi.org/10.3354/meps12119
- Hollyman P., Chenery S., Leng M., Laptikhovsky V., Colvin C., Richardson C., 2018. Age and growth rate estimations of the commercially fished gastropod Buccinum undatum // ICES Journal of Marine Science. V. 75 (6). P. 2129–2144. https://doi.org/10.1093/icesjms/fsy100
- Hollyman P., Laptikhovsky V., Richardson C., 2018a. Techniques for Estimating the Age and Growth of Molluscs: Gastropoda // Journal of Shellfish Research. V. 37. P. 773–782. https://doi.org/10.2983/035.037.0408
- Hurley G.V., Beck P., Drew J., Radtke R.L., 1979. Preliminary report on validating age readings from statoliths of the short-finned squid (Illex illecebrosus) // International commition for the Northwest Atlantic Fisheries Res. Doc. № 79/II/26, Ser. № 5352. Dartmouth, Nova Scotia: International Commission for the Northwest Atlantic Fisheries. 6 p.
- Jackson G.D., 1994. Application and future potential of statolith increment analysis in squid and sepioids // Canadian Journal of Fisheries and Aquatic Sciences. V. 51. P. 2612–2625. https://doi.org/10.1139/f94-261
- Kideys A.E., 1996. Determination of age and growth of Buccinum undatum L. (Gastropoda, Prosobranchia) off Douglas, Isle of Man // Helgoläander Meeresuntersuchungen. V. 50 (3). P. 353–368. https://doi.org/10.1007/BF02367109
- Lewis J.R., Bowman R.S., Kendall M.A., Williamson P., 1982. Some geographical components in population dynamics: possibilities and realities in some littoral species // Netherlands Journal of Sea Research. V. 16. P. 18–28.
- Lipinski M.R., 1980. A preliminary study on age of squids from their statoliths. NAFOSCR Doc. № 80/II/22. Dartmouth, Nova Scotia: Northwest Atlantic Fisheries Organization. 17 p.
- Lloyd D.C., Zacherl D.C., Walker S., Paradis G., Sheehy M., Warner R.R., 2008. Egg source, temperature and culture seawater affect elemental signatures in Kelletia kelletii larval statoliths // Marine Ecology Progress Series. V. 353. P. 115–130. https://doi.org/10.3354/meps07172
- Manríquez P., Galaz S., Opitz T., Hamilton S., Paradis G., Warner R., Castilla J., Labra F., Lagos N., 2012. Geographic variation in trace-element signatures in the statoliths of near-hatch larvae and recruits of Concholepas concholepas (loco) // Marine Ecology Progress Series. V. 448. P. 105–118. https://doi.org/10.3354/meps09514
- Markl H., 1974. The perception of gravity and of angular acceleration in invertebrates // Vestibular System Part 1: Basic Mechanisms. Springer, Berlin, Heidelberg. P. 17–74. https://doi.org/10.1007/978-3-642-65942-3_2
- Mooney C.J., Kingsford M.J., 2017. Discriminating populations of medusae (Chironex fleckeri, Cubozoa) using statolith microchemistry // Marine and Freshwater Research. V. 68. P. 1144–1152. https://doi.org/10.1071/mf16104
- Morton B., 1985. Statocyst structure in the Anomalodesmata (Bivalvia) // Journal of Zoology. V. 206. P. 23−34.
- Morton B., Machado F.M., 2021. The origins, relationships, evolution and conservation of the weirdest marine bivalves: The watering pot shells. A review // Advances in Marine Biology. V. 88. P. 137–220.
- Naylor J.R., 2010. A brief assessment of the potential of shell growth checks as a method to age paua. Final Research Report for Ministry of Fisheries Project SEA2010-01. Ministry for Primary Industries, Wellington, New Zealand. 8 p.
- Nishimura A., Yamada J., 1984. Age and growth of larval and juvenile walleye pollock Theragra chalcogramma (Pallas), as determined by otolith daily growth increments // Journal of Experimental Marine Biology and Ecology. V. 82 (2). P. 191–205. https://doi.org/10.1016/0022-0981(84)90104-7
- Panella G., 1971. Fish otoliths: daily growth layers and periodical patterns // Science. V. 173. P. 1124–1127. https://doi.org/10.1126/science.173.4002.1124
- Prince J.D., Sellers T.L., Ford W.B., Talbot S.R., 1988. A method for ageing the abalone, Haliotis rubra (Mollusca: Gastropoda) // Australian Marine and Freshwater Research. V. 39 (2). P. 167–175. https://doi.org/10.1071/MF9880167
- Richardson C.A., 2001. Molluscs as archives of environmental change // Oceanography and Marine Biology. V. 39. P. 103–164.
- Richardson C.A., Kingsley-Smith P.R., Seed R., Chatzinikolau E., 2005. Age and growth of the naticid gastropod Polinices pulchellus (Gastropoda: Naticidae) based on length frequency analysis and statolith growth rings // Marine Biology. V. 148. P. 319–326. https://doi.org/10.1007/s00227-005-0072-8
- Richardson C.A., Saurel C., Barroso C.M., Thain J., 2005a. Evaluation of the age of the red whelk Neptunea antiqua using statoliths, opercula and element ratios in the shell // Journal of Experimental Marine Biology and Ecology. V. 325. P. 55–64. https://doi.org/10.1016/J.JEMBE.2005.04.024
- Rosenberg A.A., Wiborg K.F., Beck I.M., 1980. Growth of Todarodes sagittatus (Lamarck) (Cephalopoda: Ommastrephidae) from the northwest Atlantic, based on counts of statolith growth rings // Sarsia. V. 66. P. 53–57. https://doi.org/10.1080/00364827.1981.10414520
- Roussel S., Huchette S., Clavier J., Chauvaud L., 2011. Growth of the European abalone (Haliotis tuberculata L.) in situ: seasonality and ageing using stable oxygen isotopes // Journal of Sea Research. V. 65. P. 213–218. https://doi.org/10.1016/j.seares.2010.10.001
- Power A., Sellers C., Walker R., 2009. Growth and sexual maturity of the knobbed whelk, Busycon carica (Gmelin, 1791) from a commercially harvested population in coastal Georgia. Occasional papers of the University of Georgia Marine Extension Service. V. 4. 24 p.
- Santarelli L., Gros P., 1985. Dejtermination de l’ â ge et de la croissance de Buccinum undatum L. (Gastropoda, Prosobranchia) a l’aide des isotopes stables de la coquille et de l’ornementation operculaire // Ocean Acta. V. 8 (2). P. 221–229.
- Schöne B.R., Rodland D.L., Wehrmann A., Heidel B., Oschmann W., Zhang Z., Fiebig J., Beck L., 2007. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests // Marine Biology. V. 150. P. 1237–1252. https://doi.org/10.1007/s00227-006-0435-9
- Shepherd S.A., Al-Wahaibi D., Al-Azri A.R., 1995. Shell growth checks and growth of Omani abalone Haliotis mariae // Marine and Freshwater Research. V. 46. P. 575–582. https://doi.org/10.1071/MF9950575
- Shepherd S.A., Woodby D., Rumble J.M., Avalos-Borja M., 2000. Microstructure, chronology and growth of the pinto abalone, Haliotis kamtschatkana, in Alaska // Journal of Shellfish Research. V. 19. P. 219–228.
- Spangenberg D., Beck C.W., 1968. Calcium sulfate dehydrate statoliths in Aurelia // Transactions of the American Microscopical Society. V. 87 (3). P. 329–335. https://doi.org/10.2307/3224817
- Stevenson D.K., Campana S.E. (ed.), 1992. Otolith microstructure examination and analysis // Canadian Special Publication of Fisheries and Aquatic Sciences. V. 117. P. 1–126.
- Ueno S., Imai C., Mitsutani A., 1995. Fine growth rings found in statolith of a cubomedusa Carybdea rastoni // Journal of Plankton Research. V. 17 (6). P. 1381–1384. https://doi.org/10.1016/j.jcz.2006.03.001
- Williamson R., 1995. A sensory basis for orientation in cephalopods // Journal of the Marine Biological Association of the United Kingdom. V. 75 (1). P. 83–92. https://doi.org/10.1017/S0025315400015216
- Williamson R., Kendall M.A., 1981. Population age structure and growth of the trochid Monodonta lineata determined from shell rings // Journal of the Marine Biological Association of the United Kingdom. V. 61. P. 1011–1026. https://doi.org/10.1017/S0025315400023122
- Yamashita T., 1957. Über den Statolithen in den Sinneskörpern der Meduse Aurelia aurita // Zoo Biology. V. 109. P. 111–115.
- Yoshimura T., Tamenori Y., Suzuki A., Kawahata H., Iwasaki N., Hasegawa H., Nguyen L.T., Kuroyanagi A., Yamazaki T., Kuroda J., Ohkouchi N., 2017. Altervalent substitution of sodium for calcium in biogenic calcite and aragonite // Geochimica et Cosmochimica Acta. V. 202. P. 21–38. https://doi.org/10.1016/j.gca.2016.12.003
- Zacherl D.C., Manríquez P.H., Paradis G., Day R.W., Castilla J.C., Warner R.R., Lea D.W., Gaines S.D., 2003. Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories // Marine Ecology Progress Series. V. 248. P. 297–303. https://doi.org/10.3354/meps248297
- Zacherl D.C., Paradis G., Lea D.W., 2003a. Barium and strontium uptake into larval protoconchs and statoliths of the marine neogastropod Kelletia kelletii // Geochimica et Cosmochimica Acta. V. 67. P. 4091–4099. https://doi.org/10.1016/s0016-7037(03)00384-3
- Zumholz K., Klügel A., Hansteen T., Piatkowski U., 2007. Statolith microchemistry traces the environmental history of the boreoatlantic armhook squid Gonatus fabricii // Marine Ecology Progress Series. V. 333. P. 195–204. https://doi.org/10.3354/meps333195
Supplementary files
