Coordination compounds of rare-earth Nitrates with N,N-dimethylacetamide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Coordination compounds of rare-earth nitrates with N,N-dimethylacetamide (DMAA), [Sc(H2O)(DMAA)2(NO3)(μ-OH)2Sc(NO3)(DMAA)2(H2O)](NO3)2, [La(DMAA)4(NO3)3], [Ce(DMAA)5(NO3)2][Ce(DMAA)2(NO3)4] and [Ln(DMAA)3(NO3)3] (Ln = Pr, Nd, Sm–Lu, Y), have been synthesized. Using physicochemical analysis methods (elemental analysis, IR spectroscopy, XRD, XRD, TGA-DSC), the compositions and structural features were determined; thermal decomposition of the compounds was studied in a wide temperature range (50–900°C). Complexes [Ln(DMAA)3(NO3)3] form two isostructural series: crystals with Ln = Pr–Dy belong to the monoclinic symmetry, and with Ln = Ho–Lu, Y – to the orthorhombic symmetry. It is shown that the coordination compounds can be used as precursors for the production of nanoscale REE oxides (from 12 to 50 nm) with a specific surface area of 18–65 m2/g.

Texto integral

Acesso é fechado

Sobre autores

M. Polukhin

MIREA—Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow, 119571

I. Karavaev

MIREA—Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow, 119571

E. Savinkina

MIREA—Russian Technological University

Autor responsável pela correspondência
Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow, 119571

G. Buzanov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119991

A. Kubasov

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119991

M. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119071

E. Turyshev

Kurnakov Institute of General and Inorganic Chemistry

Email: savinkina@mirea.ru
Rússia, Moscow, 119991

Bibliografia

  1. Wang Q., Fan H., Xiao Y., Zhang Y. // J. Rare Earths. 2022. V. 40. № 11. P. 1668. https://doi.org/10.1016/j.jre.2021.09.003
  2. Bo Liu, Na L., Liping S. et al. // J. Alloys Compd. 2021. V. 870. № 25. P. 159397. https://doi.org/10.1016/j.jallcom.2021.159397
  3. Huang K., Goodenough J.B. // J. Alloys Compd. 2000. V. 303–304. № 24. P. 454. https://doi.org/10.1016/S0925-8388(00)00626-5
  4. Wang B., Li K., Lui J. et al. // Int. J. Hydrogen Energy. 2024. V. 61. № 3. P 216. https://doi.org/10.1016/j.ijhydene.2024.02.198
  5. Richard A.R., Fan M. // J. Rare Earths. 2018. V. 36. № 11. P. 11127. https://doi.org/10.1016/j.jre.2018.02.012
  6. Colussi S., de Leitenburg C., Dolcetti G., Trovarelli A. // J. Alloys Compd. 2004. V. 374. № 1–2. P. 387. https://doi.org/10.1016/j.jallcom.2003.11.028
  7. Gao W., Wen D., Ho J.C., Qu Y. // Mater. Today Chem. 2019. V. 12. P. 266. https://doi.org/10.1016/j.mtchem.2019.02.002
  8. Zhang R., Tu Z.A., Meng S. et al. // Rare Met. 2023. V. 42. P. 176. https://doi.org/10.1007/s12598-022-02136-5
  9. Ahmad I., Akhtar M.S., Ahmed E. et al. // Sep. Purif. Technol. 2020. V. 237. № 15. P. 116328. https://doi.org/10.1016/j.seppur.2019.116328
  10. Kang W., Ozgur D.O., Varma A. // ACS Appl. Nano Mater. 2018. V. 1. № 2. P. 675. https://doi.org/10.1021/acsanm.7b00154
  11. Bakkiyaraj R., Bharath G., Hashi R.K. et al. // RSC Adv. 2016. V. 6. № 56. P. 51238. https://doi.org/10.1039/C6RA00382F
  12. Gupta S.K., Sudarshan K., Kadam R.M. // Mater. Today Commun. 2021. V. 27. P. 102227. https://doi.org/10.1016/j.mtcomm.2021.102277
  13. Nagabhushana H., Nagabhushana B.M., Rudraswamy B. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2012. V. 86. P. 8. https://doi.org/10.1016/j.saa.2011.05.072
  14. Priya R., Pandey O.P., Sanjay J.D. // Optics & Laser Technology. 2021. V. 135. P. 106663. https://doi.org/10.1016/j.optlastec.2020.106663
  15. Liu N., Zhang J., Duan Y. et al. // J. Eur. Ceram. Soc. 2020. V. 40. № 4. P. 1132. https://doi.org/10.1016/j.jeurceramsoc.2019.11.058
  16. Ram P., Goren A., Ferdov S. et al. // New J. Chem. 2016. V. 40. № 7. P. 6244. https://doi.org/10.1016/j.compositesb.2017.11.054
  17. Halefoglu Y.Z., Yuksel M., Derin H. et al. // Appl. Radiat. Isot. 2018. V. 142. P. 46. https://doi.org/10.1016/j.apradiso.2018.09.012
  18. Ding Y., Zhang P., Jiang Y. et al. // Solid State Ionics. 2007. V. 178. № 13–14. P. 967. https://doi.org/10.1016/j.ssi.2007.04.012
  19. Shinde R.S., Jaiswal R.S., Kadam S.L. et al. // Energy Technol. 2024. V. 12. № 9. P. 2400608. https://doi.org/10.1002/ente.202400608
  20. Kim D. // Nanomaterials. 2021. V. 11. № 3. P. 723. https://doi.org/10.3390/nano11030723
  21. Zybert M., Ronduda H., Raróg-Pilecka W. // Front. Energy Res. 2023. V. 11. P. 1248641. https://doi.org/10.3389/fenrg.2023.1248641
  22. Subash T.D. // Mater. Today Proceed. 2017. V. 4. № 2. Part B. P. 4302. https://doi.org/10.1016/j.matpr.2017.02.134
  23. Shiri H.M., Ehsani A. // Bull. Chem. Soc. Jpn. 2016. V. 89. № 10. P. 1201. https://doi.org/10.1246/bcsj.20160082
  24. Bellakki M.B., Prakash A.S., Shivakumara C. et al. // Bull. Mater Sci. 2006. V. 29. P. 339. https://doi.org/10.1007/BF02704133
  25. Shirzadi-Ahodashti M., Mortazavi-Derazkola S., Ebrahimzadeh M.A. // J. Mater. Res. Technol. 2023. V. 27. P. 1843. https://doi.org/10.1016/j.jmrt.2023.10.079
  26. Yang J., Chen H., Zhang J. et al. // Surf. Coat. Technol. 2011. V. 205. № 23–24. P. 5497. https://doi.org/10.1016/j.surfcoat.2011.06.020
  27. Xiao H., Li P., Jia F., Zhang L. // J. Phys. Chem. C. 2009. V. 113. № 50. P. 21034. https://doi.org/10.1021/jp905538k
  28. Kabir H., Nandyala S.H., Mahbubur Rahman M. et al. // Ceram. Int. 2019. V. 45. № 1. P. 424. https://doi.org/10.1016/j.ceramint.2018.09.183
  29. Yang J., Chen H., Zhang J. et al. // Surf. Coat. Technol. 2011. V. 205. № 23–24. P. 5497. https://doi.org/10.1016/j.surfcoat.2011.06.020
  30. Li N., Yanagisawa K. // J. Solid State Chem. 2008. V. 181. № 8. P. 1738. https://doi.org/10.1016/j.jssc.2008.03.031
  31. Yin S., Akita S., Shinozaki M. et al. // J. Mater Sci. 2008. V. 43. P. 2234. https://doi.org/10.1007/s10853-007-2070-3
  32. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. № 4. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  33. Gizowska M., Piątek M., Perkowski K. et al. // Nanomater. 2020. V. 10. № 5. P. 831. https://doi.org/10.3390/nano10050831
  34. Кузнецов И.В., Зобкова А.Ю., Каленова М.Ю. и др. // Тонкие химические технологии. 2024. Т. 19. № 2. С. 149.
  35. Krsmanovic R., Lebedev O.I., Speghini A. et al. // Nanotechnology. 2006. V. 17. № 11. P. 2805. https://doi.org/10.1088/0957-4484/17/11/013
  36. Krsmanović R., Antić Ž., Bártová B., Dramićanin M.D. // J. Alloys Compd. 2010. V. 505. № 1. P. 224. https://doi.org/10.1016/j.jallcom.2010.06.033
  37. Peng T., Yang H., Pu X. et al. // Mater. Lett. 2004. V. 58. № 3–4. P. 352. https://doi.org/10.1016/S0167-577X(03)00499-3
  38. Lakshminarasappa B.N., Jayaramaiah J.R., Nagabhushana B.M. // Powder Technol. 2012. V. 217. P. 7. https://doi.org/10.1016/j.powtec.2011.09.042
  39. Savinkina E.V, Karavaev I.A., Grigoriev M.S. еt al. // Inorg. Chim. Acta. 2022. V. 532. P. 120759. https://doi.org/10.1016/j.ica.2021.120759
  40. Shi S., Hossu M., Hallb R., Chen W. // J. Mater. Chem. 2012. V. 22. P. 23461. https://doi.org/10.1039/C2JM34950G
  41. Fu Z., Liu B. // Ceram. Int. 2016. V. 42. № 2. P. 2357. https://doi.org/10.1016/j.ceramint.2015.10.032
  42. Moothedan M., Sherly K.B. // J. Water Process. 2016. V. 9. P. 29. https://doi.org/10.1016/j.jwpe.2015.11.002
  43. Mukherjee S., Sudarsan V., Sastry P.U. et al. // J. Lumin. 2014. V. 145. P. 318. https://doi.org/10.1016/j.jlumin.2013.07.058
  44. Chandradass J., Kim K.H. // Adv. Powder Techol. 2010. V. 21. № 2. P. 100. https://doi.org/10.1016/j.apt.2009.10.014
  45. Xia G., Wang S., Zhou S., Xu J. // Nanotechnology. 2010. V. 21. P. 345601. https://doi.org/ 10.1088/0957-4484/21/34/345601
  46. Петричко М.И., Караваев И.А., Савинкина Е.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 482.
  47. Ryskaliyeva A.K., Baltbayev M.E., Zhubatova A.M. // Acta Chim. Slov. 2018. V. 65. P. 127. https://doi.org/10.17344/acsi.2017.3683
  48. Vicentini G., De Carvalho Filho E. // J. Inorg. Nucl. Chem. 1966. V. 28. P. 2987. https://doi.org/10.1016/0022-1902(66)80026-X
  49. Matheus M., Briansó J.L., Solans X. et al. // Z. Kristallogr. Cryst. Mater. 1983. V. 165. № 1–4. P. 233. https://doi.org/10.1524/zkri.1983.165.14.233
  50. Rogers R.D. CCDC 1588497: Experimental Crystal Structure Determination, 2017. https://doi.org/10.5517/ccdc.csd.cc1q9yvt
  51. SAINT, Madison: Bruker AXS Inc., 2018.
  52. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  53. Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  54. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  55. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  56. Allen F.H. Crystal Structure Visualisation, Exploration and Analysis software. Version 4.2.0. Cambridge Structural Database. 2019. https://doi.org/10.1017/S0885715619000666
  57. Караваев И.А., Савинкина Е.В., Григорьев М.С. // Журн. неорган. химии. 2022. Т. 67. № 8. С. 1080.
  58. Guan X.S., Dong Z.F., Li D.Y. // Nanotechnology. 2005. V. 16. P. 2963. https://doi.org/10.1088/0957-4484/16/12/040
  59. Birks L.S., Friedman H. // J. Appl. Phys. 1946. V. 17. P. 687. https://doi.org/10.1063/1.1707771

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural series of synthesized complexes.

Baixar (121KB)
3. Fig. 2. Experimental (a) and theoretical (b) diffraction patterns of the samples [Sc(H2O(DMAA)2(NO3)(μ-OH)2Sc(NO3)(DMAA)2(H2O)](NO3)2 (1), [La(DMAA)4(NO3)3] (2), [Ce(DMAA)5(NO3)2][Ce(DMAA)2(NO3)4] (3), [Eu(DMAA)3(NO3)3](monocle) (4) and [Er(DMAA)3(NO3)3](diamond) (5).

Baixar (269KB)
4. Fig. 3. ORTEP view of coordination compounds I (a), II (b), III (c), VII (d), XII (d), hydrogen atoms are not shown.

Baixar (445KB)
5. Fig. 4. Thermograms of the complexes [Pr(DMAA)3(NO3)3] (a) and [Eu(DMAA)3(NO3)3] (b); 1 – mass loss curve, 2 – differential curve.

Baixar (164KB)
6. Fig. 5. Powder diffraction patterns of Pr6O11 (1), Eu2O3 (2), Ho2O3 (3), Er2O3 (4) and Y2O3 (5).

Baixar (203KB)
7. Fig. 6. Micrographs of oxides Nd2O3 (a), Eu2O3 (b), Tb4O7 (c), Er2O3 (d).

Baixar (436KB)
8. Fig. 7. Isotherms of N2 adsorption and desorption on the surface of La2O3 (a) and CeO2 (b).

Baixar (220KB)
9. Fig. S1. IR spectra of the complexes: (a) – [Ln(DMAA)3(NO3)3] (monocle): Ln = Gd (1), Eu (2), Dy (3), Tb (4), Sm (5), Nd (6), Pr (7); (b) – [Ln’(DMAA)3(NO3)3] (diamond): Ln’ = Lu (1), Er (2), Ho (3), Yb (4), Y (5), Tm (6); (c): [Ce(DMAA)5(NO3)2][Ce(DMAA)2(NO3)4] (1), [Sc(H2O)(DMAA)2(NO3)(μ-OH)2(NO3)(DMAA)2(H2O)Sc](NO3)2 (2), [La(DMAA)3.7(NO3)3] (3)

Baixar (113KB)
10. Fig. S2. Thermograms of the complexes: (a) – [La(DMAA)4(NO3)3], (b) – [Ce(DMAA)5(NO3)2][Ce(DMAA)2(NO3)4], (c) – [Nd(DMAA)3(NO3)3], (d) – [Y(DMAA)3(NO3)3], (e) – [Ho(DMAA)3(NO3)3], (f) – [Er(DMAA)3(NO3)3], (g) – [Tb(DMAA)3(NO3)3]: a – mass loss curve, b – differential curve

Baixar (315KB)
11. Figure S3. IR spectrum of products of VII thermolysis at 315°C

Baixar (13KB)
12. Supplementary materials
Baixar (1MB)
13. Supplementary materials
Baixar (1MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025