Thermodynamic modeling of phase formation conditions in the system CuO–CO2–H2O–NH3

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Phase formation in the CuO–CO2–H2O–NH3 system has been studied using thermodynamic modelling in the temperature range of 20–100°C, рo = 0.1 MPa and ammonia concentrations of 0, 0.01 and 2.0 mol/kg. The stability fields of tenorite [CuO], malachite [Cu2CO3(OH)2], azurite [Cu3(CO3)2(OH)2] were determined and the compositions of the solutions in equilibrium with the solid phases were calculated. The effect of temperature and ammonia concentration on the change in phase relations in the system was shown. It was found that during the interaction of tenorite, malachite and azurite with ammonia solutions 1.0–3.0 mol/kg, the copper content in the solution increased with increasing ammonia concentration and decreased with increasing temperature. The results presented provide a basis for understanding the mechanism of mineral formation in aqueous copper-carbonate systems, as well as for solving a number of environmental problems and developing technological processes for ammonia leaching.

全文:

受限制的访问

作者简介

T. Bublikova

Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: tmb@iem.ac.ru
俄罗斯联邦, Chernogolovka, 142432

T. Setkova

Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

Email: tmb@iem.ac.ru
俄罗斯联邦, Chernogolovka, 142432

V. Balitsky

Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences

Email: tmb@iem.ac.ru
俄罗斯联邦, Chernogolovka, 142432

参考

  1. Смирнов С.С. Зона окисления сульфидных месторождений. Л.: Изд-во АН СССР, 1955. 231 с.
  2. Preis W., Gamsjäger H. // J. Chem. Thermodyn. 2002. V. 34. P. 631. http://dx.doi.org/10.1006/jcht.2002.0928
  3. Schindler P., Reinert M., Gamsjäger H. // Helv. Chim. Acta. 1968. V. 51. P. 1845. https://doi.org/10.1002/hlca.19680510805
  4. Symes J.L., Kester D.R. // Geochim. Cosmochim. Acta. 1984. V. 48. P. 2219. https://doi.org/10.1016/0016-7037(84)90218-7
  5. Puigdomenech I., Taxén C. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions. Technical Report SKB-TR-00-13. Stockholm, 2000. 96 p.
  6. Орехова Н.Н., Шадрунова И.В. Образование и комплексная переработка природно-техногенных вод при эксплуатации медно-цинково-колчеданных месторождений. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2015. 185 c.
  7. Обзор зарубежных практик захоронения ОЯТ и РАО / Под ред. Линге И.И., Полякова Ю.Д. М.: Изд-во Комтехпринт, 2015. 208 c.
  8. Arzutug M.E., Kocakerim M.M., Copur M. // Ind. Eng. Chem. Res. 2004. № 43. P. 4118. https://doi.org/10.1021/ie0342558
  9. Wang Xi, Chen Qiyuan, Huiping Hu et al. // Hydrometallurgy. 2009. № 99. P. 231. https://doi.org/10.1016/j.hydromet.2009.08.011
  10. Radmehr V., Koleni S.M.J., Khalesi M.R. et al. // J. Inst. Eng. India Ser. D. 2014. V. 94. P. 95. https://doi.org/10.1007/s40033-013-0029-x
  11. Aracena A., Vivar Y., Jerez O., Vásquez D. // Miner. Process. Extr. Metall. Rev. 2015. V. 36. P. 317. https://doi.org/10.1080/08827508.2015.1004404
  12. Aracena A., Pino J., Jerez O. // Metals. 2020. № 10. P. 833. https://doi.org/10.3390/met10060833
  13. Turan M.D., Ramazan O., Turan M. et al. // Mining, Metallurgy & Exploration. 2020. V. 37. P. 1349. https://doi.org/10.1007/s42461-020-00241-6
  14. Velásquez-Yévenes L., Ram R. // Cleaner Eng. Technol. 2022. V. 9. P. 100515. https://doi.org/10.1016/j.clet.2022.100515
  15. Panayotova М., Panayotov V. // J. Scient. Appl. Res. 2017. V. 11. P. 10.
  16. Shvarov Yu.V., Bastrakov E. HCh: a Software Package for Geochemical Equilibrium Modeling: User’s Guide (AGSO RECORD 1999/y). Canberra: Austr. Geol. Surv. Organisation; Dept. Industry, Science and Resources. 1999. 57 p.
  17. Русанов А.И. // Журн. общ. химии. 2022. Т. 92. № 4. С. 497. https://doi.org/10.31857/S0044460X22040011
  18. Рыженко Б.Н. Термодинамика равновесий в гидротермальных растворах. М.: Наука, 1981. 191 c.
  19. Helgeson H.C., Kirkham D.H., Flowers G.C. // Am. J. Sci. 1981. № 281. P. 1249. https://doi.org/10.2475/ajs.281.10.1249
  20. Бубликова Т.М., Балицкий В.С., Тимохина И.В. Синтез и основные свойства ювелирно-поделочного малахита. Синтез минералов. Т. 1. Александров, 2000. 662 c.
  21. Рыбникова Л.С., Рыбников П.А., Тютков О.В. // Водное хозяйство России. 2014. № 6. С. 77.
  22. Nienhuis J., Robbiola L., Giuliani R. et al. // e-Preservation Sci. 2016. V. 13. P. 23.
  23. Lytle D.A., Wahman D., Schock M.R. et al. // Chem. Eng. J. 2019. V. 355. P. 1. https://doi.org/10.1016/j.cej.2018.08.106
  24. Кочкин Б.Т., Мальковский В.И., Юдинцев С.В. Научные основы оценки безопасности геологической изоляции долгоживущих радиоактивных отходов (Енисейский проект). М.: ИГЕМ РАН, 2017. 384 c.
  25. Suzuki Y., Hisamatsu Y. // Corros. Sci. 1981. V. 21. P. 353.
  26. Зуев В.А., Букаты М.Б., Хафизов Р.Р. // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2008. № 6. С. 531.
  27. Cole J.J., Prairie Y.T. // Reference Module Earth Systems Environ. Sci. 2014. https://doi.org/10.1016/b978-0-12-409548-9.09399-4
  28. Алексеева О.В., Смирнова Д.Н., Носков А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1021. https://doi.org/10.31857/S0044457X23600299
  29. Künkül A., Kocakerim M.M., Yapici S. et al. // Int. J. Miner. Process. 1994. V. 41. P. 167. https://doi.org/10.1016/0301-7516(94)90026-4
  30. Рудской А.И., Кузнецов Н.Т., Иванов В.К. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 694. https://doi.org/10.31857/S0044457X23600068

补充文件

附件文件
动作
1. JATS XML
2. Application
下载 (23KB)
3. Fig. 1. Solubility isothermal diagrams of compounds in the CuO–CO2–H2O system: t = 25, 50, 75, 100°C; p = 0.1 MPa; Tnr – tenorite, Mlc – malachite, Azu – azurite; 1 – partial pressure of CO2 under atmospheric conditions; 2 – CO2 content in rainwater [1].

下载 (175KB)
4. Fig. 2. Concentration of copper particles in a solution in equilibrium with solid phases of the CuO–CO2–H2O system, depending on pH; t = 25 (a), 100°C (b); p = 0.1 MPa.

下载 (192KB)
5. Fig. 3. Solubility isothermal diagrams of compounds in the CuO–CO2–H2O–NH3 system: CNH3 = 0.01 mol/kg; t = 25 (a), 100°C (b); p = 0.1 MPa.

下载 (110KB)
6. Fig. 4. Concentration of aqueous particles and copper complexes in a solution in equilibrium with solid phases of the CuO–CO2–H2O–NH3 system, depending on pH. CNH3 = 0.01 mol/kg; t = 25 (a), 100°C (b); p = 0.1 MPa.

下载 (269KB)
7. Fig. 5. Dependence of copper concentration in solution on temperature during dissolution of tenorite (Tnr) and malachite (Mlc) in a 0.01 m NH3 solution.

下载 (46KB)
8. Fig. 6. Ratio of solid phases in the process of incongruent dissolution of malachite (Mlc) in a 0.01 m NH3 solution.

下载 (39KB)
9. Fig. 7. Solubility isothermal diagrams of compounds in the CuO–CO2–H2O–NH3 system. СNH3 = 2.0 mol/kg; t = 25 (a), 100°С (b); р = 0.1 MPa.

下载 (105KB)
10. Fig. 8. Concentration of aqueous particles and copper complexes in a solution in equilibrium with solid phases of the CuO–CO2–H2O–NH3 system depending on pH. СNH3 = 2.0 mol/kg; t = 25 (a), 100°С (b); р = 0.1 MPa.

下载 (237KB)
11. Fig. 9. Dependence of copper concentration in solution on temperature during dissolution: a – tenorite, b – malachite, c – azurite in solutions of 1.0 (1), 2.0 (2), 3.0 m NH3 (3). Black triangles in Fig. 9b are experimental data from [9].

下载 (166KB)
12. Fig. 10. Ratio of solid phases in the process of incongruent dissolution: a – malachite (Mlc); b – azurite (Azu) in solutions of 1.0 (1), 2.0 (2), 3.0 m NH3 (3).

下载 (84KB)

版权所有 © Russian Academy of Sciences, 2025