Study of Hydrophilic/Hydrophobic Properties of Borylated Iminols [BnHn – 1NHC(OH)R]– (n = 10, 12)
- Autores: Ryabchikova M.N.1, Nelyubin A.V.2, Klyukin I.N.2, Zhdanov A.P.2, Zhizhin K.Y.2, Kuznetsov N.T.2
 - 
							Afiliações: 
							
- National Research University Higher School of Economics
 - Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
 - Edição: Volume 68, Nº 10 (2023)
 - Páginas: 1373-1378
 - Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://archivog.com/0044-457X/article/view/666166
 - DOI: https://doi.org/10.31857/S0044457X23600895
 - EDN: https://elibrary.ru/EXAKMI
 - ID: 666166
 
Citar
Texto integral
Resumo
The behavior of borylated iminols based on the closo-decaborate and closo-dodecaborate anions in the dichloromethane–water system has been studied as a function of the pH of the aqueous phase. The distribution coefficients of compounds in the n-octanol–water system have been determined: for (Bu4N)[B12H11NHC(OH)CH3], log Kow = –0.46; for (Bu4N)[2-B10H9NHC(OH)CH3], log Kow = –0.51. These compounds show hydrophilic properties similar to those of formic and acetic acids. It has been shown that this method can be used to purify target compounds from hydrolysis products in the preparation of various derivatives as a result of nucleophilic addition of the closo-borate anions to nitrilium derivatives.
Palavras-chave
Sobre autores
M. Ryabchikova
National Research University Higher School of Economics
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								101000, Moscow, Russia						
A. Nelyubin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
I. Klyukin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Zhdanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
K. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Zhang Y., Liu J., Duttwyler S. // Eur. J. Inorg. Chem. 2015. V. 2015. № 31. P. 5158. https://doi.org/10.1002/ejic.201501009
 - Messina M.S., Axtell J.C., Wang Y. et al. // J. Am. Chem. Soc. 2016. V. 138. № 22. P. 6952. https://doi.org/10.1021/jacs.6b03568
 - Bolli C., Derendorf J., Jenne C. et al. // Chem. Eur. J. 2014. V. 20. № 42. P. 13783. https://doi.org/10.1002/chem.201403625
 - Grüner B., Bonnetot B., Mongeot H. // Collect. Czech. Chem. Commun. 1997. V. 62. № 8. P. 1185. https://doi.org/10.1135/cccc19971185
 - Sivaev I.B., Bregadze V.I., Sjöberg S. // Collect. Czech. Chem. Commun. 2002. V. 67. № 6. P. 679. https://doi.org/10.1135/cccc20020679
 - Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Inorganics. 2022. V. 10. № 11. P. 196. https://doi.org/10.3390/inorganics10110196
 - Bogdanova E.V., Stogniy M.Yu., Suponitsky K.Yu. et al. // Molecules. 2021. V. 26. № 21. P. 6544. https://doi.org/10.3390/molecules26216544
 - Laskova J., Ananiev I., Kosenko I. et al. // Dalton Trans. 2022. V. 51. № 8. P. 3051. https://doi.org/10.1039/D1DT04174F
 - Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Molecular Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
 - Losytskyy M.Yu., Kovalska V.B., Varzatskii O.A. et al. // J. Lumin. 2016. V. 169. P. 51. https://doi.org/10.1016/j.jlumin.2015.08.042
 - Kimura S., Masunaga S., Harada T. et al. // Bioorg. Med. Chem. 2011. V. 19. № 5. P. 1721. https://doi.org/10.1016/j.bmc.2011.01.020
 - Fedotova M.K., Usachev M.N., Bogdanova E.V. et al. // Bioengineering. 2021. V. 9. № 1. P. 5. https://doi.org/10.3390/bioengineering9010005
 - Zhang Y., Sun Y., Wang T. et al. // Molecules. 2018. V. 23. № 12. P. 1. https://doi.org/10.3390/molecules23123137
 - Varkhedkar R., Yang F., Dontha R. et al. // ACS Central Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
 - Sun Y., Zhang J., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 41. P. 10364. https://doi.org/10.1002/chem.201801602
 - Nelyubin A.V., Sokolov M.S., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1751. https://doi.org/10.1134/S003602362260109X
 - Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1776. https://doi.org/10.1134/S0036023622601106
 - Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
 - Zhdanov A.P., Klyukin I.N., Bykov A.Y. et al. // Polyhedron. 2017. V. 123. P. 176. https://doi.org/10.1016/j.poly.2016.11.035
 - Nelyubin A.V., Klyukin I.N., Zhdanov A.P. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 14. P. 1750. https://doi.org/10.1134/S0036023619140043
 - Šícha V., Plešek J., Kvíčalová M. et al. // Dalton Trans. 2009. № 5. P. 851. https://doi.org/10.1039/B814941K
 - Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2019. V. 194. P. 1. https://doi.org/10.1080/10426507.2019.1631312
 - Guangxian X., Jimei X., Technolgy S. // New Frontiers in Rare Earth Science and Applications. 1985. https://doi.org/10.1016/c2013-0-11730-8
 - Нелюбин А.В., Клюкин И.Н., Селиванов Н.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 6. С. 768. https://doi.org/10.31857/S0044457X22602310
 - Yang S.T., White S.A., Hsu S.T. // Ind. Eng. Chem. Res. 1991. V. 30. № 6. P. 1335. https://doi.org/10.1021/ie00054a040
 - Dupont-Leclercq L., Giroux S., Henry B. et al. // Langmuir. 2007. V. 23. № 21. P. 10463. https://doi.org/10.1021/la7017488
 - Fu H., Sun Y., Teng H. et al. // Sep. Purif. Technol. 2015. V. 139. P. 36. https://doi.org/10.1016/j.seppur.2014.11.001
 - Zhdanov A.P., Bykov A.Y., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 4. P. 468. https://doi.org/10.1134/S0036023617040210
 - Dearden J.C., Bresnen G.M. // Quantitative Structure-Activity Relationships. 1988. V. 7. № 3. P. 133. https://doi.org/10.1002/qsar.19880070304
 - Grüner B., Plzák Z. // J. Chromatogr. A. 1997. V. 789. № 1–2. P. 497. https://doi.org/10.1016/S0021-9673(97)00497-4
 - Horáček O., Papajová-Janetková M., Grüner B. et al. // Talanta. 2021. V. 222. P. 121652. https://doi.org/10.1016/j.talanta.2020.121652
 
Arquivos suplementares
				
			
						
						
					
						
						
									







