Electric Polarization in the BiMn7O12 Quadruple Manganite: A 57Fe Probe Mössbauer Investigation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The electrical hyperfine interactions of the probe 57Fe nuclides localized in the structure of the quadruple manganite BiMn7O12 are studied by Mössbauer spectroscopy. The measurements are carried out in the temperature range 101 K < T < 447 K, where this manganite has a nonzero spontaneous electric polarization (Ps); moreover, this range includes the temperature (T* ≈ 240 K) of the P1 ↔ Im structural phase transition. The parameters of the hyperfine interactions of the partial spectra of the 57Fe nuclei are comprehensively analyzed, and their crystal-chemical correspondence to certain positions of Jahn–Teller Mn3+ ions in the structure of manganite is performed. The “dynamic” Born charge model is used to develop an algo rithm to construct the temperature dependence of the polarization of the crystal Ps(T) using structural data of the compound and the experimental values of the quadrupole splittings Δ(T) of the Mössbauer spectra of the 57Fe probe atoms. The Ps(T) dependences obtained on both sides of point T* are analyzed in terms of the mean-field model.

作者简介

V. Nitsenko

Moscow State University

Email: janglaz@bk.ru
119991, Moscow, Russia

A. Sobolev

Moscow State University

Email: janglaz@bk.ru
119991, Moscow, Russia

A. Belik

International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)

Email: janglaz@bk.ru
Namiki 1-1, 305-0044, Tsukuba, Ibaraki, Japan

Ya. Glazkova

Moscow State University

Email: janglaz@bk.ru
119991, Moscow, Russia

I. Presnyakov

Moscow State University

编辑信件的主要联系方式.
Email: janglaz@bk.ru
119991, Moscow, Russia

参考

  1. D. Khomskii, Physics 2, 20 (2009).
  2. K. Kouˇril, V. Chlan, H. Sˇtˇep'ankov'a et al., Acta Phys. Pol. A 127(2), 234 (2015).
  3. Yu. N. Ivanov, A. A. Sokhovskii, and N. V. Volkov, J. Struct. Chem. 54, S130 (2013).
  4. A. G. Smol'nikov, V. V. Ogloblichev, S. V. Verkhovskii et al., JETP Lett. 102, 674 (2015).
  5. M. Prinz-Zwick, T. Gimpel, K. Geirhos et al., Phys. Rev. B 105, 014301 (2022).
  6. A. G. Smol'nikov, V. V. Ogloblichev, A. Yu. Germov et al., JETP Lett. 107(2), 134 (2018).
  7. A. V. Zalessky, A. A. Frolov, T. A. Khimich et al., Europhys. Lett. 50(4), 547 (2000).
  8. S.-H. Baek, A. P. Reyes, M. J. R. Hoch et al., Phys. Rev. B 74, 140410(R) (2006).
  9. E. Jo, S. Park, J. Lee et al., Sci. Rep. 7, 2178 (2017).
  10. A. G. Smol'nikov, V. V. Ogloblicheva, S. V. Verkhovskii et al., Phys. Met. Metallogr. 118, 134 (2017).
  11. M. Pregelj, P. Jegliˇc, A. Zorko et al., Phys. Rev. B 87, 144408 (2013).
  12. G. M. Kalvius, F. J. Litterst, O. Hartmann et al., J. Phys. Conf. Ser. 551, 012014 (2014).
  13. P. J. Baker, H. J. Lewtas, S. J. Blundell et al., Phys. Rev. B 81, 214403 (2010).
  14. H. J. Lewtas, T. Lancaster, P. J. Baker et al., Phys. Rev. B 81, 014402 (2010).
  15. G. N. P. Oliveira, R. C. Teixeira, R. P. Moreira et al., Sci. Rep. 10, 4686 (2020).
  16. A. M. L. Lopes, G. N. P. Oliveira, and T. M. Mendon¸ca, Phys. Rev. B 84, 014434 (2011).
  17. A. Sobolev, V.Rusakov, A. Moskvin et al., J. Phys.: Condens. Matter 29, 275803 (2017).
  18. А. В. Соболев, И. А. Пресняков, В. С. Русаков и др., ЖЭТФ 151, 1104 (2017).
  19. A. V. Sobolev, V. S.Rusakov, A. M. Gapochka et al., Phys. Rev. B 101, 224409 (2020).
  20. S. S. M. Santos, M. L. Marcondes, I. P. Miranda et al., J. Mater. Chem. C 9, 7005 (2021).
  21. T. T. Dang, J. Schell, A. G. Boa et al., Phys. Rev. B 106, 054416 (2022).
  22. Y. Yeshurun, S. Havli,n and Y. Schlesinger, Solid State Commun. 27, 181 (1978).
  23. A. Gauzzi, G. Rousse, F. Mezzandri et al., J. Appl. Phys. 113, 043920 (2013).
  24. I. Yamada, Sci. Technol. Adv. Mat. 18, 541 (2017).
  25. С. В. Стрельцов, Д. И. Хомский, УФН 187, 1205 (2017).
  26. А. В. Соболев, А. В. Боков, В. И и др., ЖЭТФ 156, 972 (2019).
  27. D. I. Khomskii, Transition metal compounds, Cambridge Univ. Press, Cambridge (2014).
  28. A. A. Belik, Y. Matsushita, Y. Kumagai et al., Inorg. Chem. 56, 12272 (2017).
  29. I. A. Presniakov, V. S.Rusakov, T. V. Gubaidulina et al., Phys. Rev. B 76, 214407 (2007).
  30. Y. S. Glazkova, N. Terada, Y. Matsushita et al., Inorg. Chem. 54, 9081 (2015).
  31. A. A. Belik, Y. S. Glazkova, Y. Katsuya et al., Phys. Chem. C 120, 8278 (2016).
  32. W. A. Slawinski, H. Okamoto, and H. Fjellwag, Acta Cryst. 73, 313 (2017).
  33. M. E. Matsnev and V. S.Rusakov, AIP Conf. Proc. 1489, 178 (2012).
  34. D. P. E. Dickson and F. J. Berry, M¨ossbauer Spectroscopy, Cambridge Univ. Press, Cambridge (1986).
  35. Z. M. Stadnik, J. Phys. Chem. Solids 45, 311 (1984).
  36. Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).
  37. R. D. Shannon and R. X. Fischer, Phys. Rev. B 73, 235111 (2006).
  38. N. E. Brese and M. O'Kee e, Acta Cryst. B 47, 192 (1991).
  39. C. L. Wang, J. C. Li, M. L. Zhao et al., Physica A 387, 115 (2008).
  40. C. L. Wang, Z. K. Qin, and D. L. Lin, Phys. Rev. B 40(1), 680 (1989).
  41. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023