INTERFERENTsIONNAYa POPRAVKA K OPTIChESKOMU KONDAKTANSU MAGNITOAKTIVNOY SREDY S RASSEIVAYuShchIMI NEODNORODNOSTYaMI

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Вычислен интерференционный вклад в оптический кондактанс (полное пропускание) неупорядоченного образца. Показано, что причиной подавления интерференции волн в среде являются акты рассеяния с переворотом спиральности. Вследствие этого, при резонансном изменении сечения этого процесса, как в случае рассеяния на частицах Ми в окрестности первой точки Керкера, спектральная зависимость интерференционного вклада также приобретает резонансный характер. При распространении волн через магнитоактивную среду приложенное магнитное поле не нарушает интерференции волн с заданной спиральностью, но подавляет ее, если спиральность на различных участках траектории меняется. Это приводит к уменьшению интерференционного вклада в кондактанс с ростом магнитного поля. Аналогичное явление — отрицательное магнитосопротивление — известно как следствие слабой локализации электронов в металлах с примесями. Обнаружено, что с ростом магнитного поля изменение интерференционной поправки к оптическому кондактансу стремится к некоторому предельному значению, зависящему от отношения транспортной длины свободного пробега к длине рассеяния с переворотом спиральности. Обсуждается возможность управления с помощью поля переходом к режиму сильной «андерсоновской» локализации в квазиодномерном случае (магнитоактивный волновод).

About the authors

E. E. Gorodnichev

Национальный исследовательский ядерный университет «МИФИ»

Email: gorodn@theor.mephi.ru
Москва, Россия

D. B. Rogozkin

Национальный исследовательский ядерный университет «МИФИ»; Всероссийский научно-исследовательский институт автоматики им. Н. Л. Духова (ВНИИА)

Email: rogozkin@theor.mephi.ru
Москва, Россия; Москва, Россия

References

  1. Analogies in Optics and Microelectronics, ed. by W. van Haeringen and D. Lenstra, Kluwer, Dordrecht (1990).
  2. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons, Cambrige University Press, Cambrige (2007).
  3. S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
  4. L. Schertel, O. Irtenkauf, C. M. Aegerter et al., Phys. Rev.A 100, 043818 (2019).
  5. K. Y. Bliokh, S. A. Gredeskul, P. Rajan et al., Phys. Rev.B 85, 014205 (2012).
  6. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, et al., Phys. Rev. Lett. 101, 113902 (2008).
  7. F. Scheffold and G. Maret, Phys.Rev.Lett. 81, 5800 (1998).
  8. A. A. Chabanov, N. P. Tregoures, B. A. van Tiggelen, and A. Z. Genack, Phys. Rev. Lett. 92, 173901 (2004).
  9. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Ha-fezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).
  10. B. L. Altshuler, A. G. Aronov, D. E. Khmel’nitskii, A. I. Larkin, Quantum Theory of Solids, Mir, Moscow (1982), p. 130.
  11. G. Bergmann, Phys. Rep. 107, 1 (1984).
  12. M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod. Phys. 71, 313 (1999).
  13. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
  14. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 68, 21 (1998).
  15. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 133, 839 (2008).
  16. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ, 89, 649 (2009).
  17. E. E. Gorodnichev, A. I. Kuzovlev, and D. B. Rogoz-kin, JOSA A33, 95, (2016).
  18. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, Письма в ЖЭТФ 104, 155 (2016).
  19. R. Lenke, R. Lehner, and G. Maret, Europhys. Lett. 52, 620 (2000).
  20. R. Lenke, C. Eisenmann, D. Reinke, and G. Maret, Phys. Rev. E 66, 056610 (2002).
  21. E. E. Gorodnichev and D. B. Rogozkin, J. Phys.: Conf. Ser. 1686, 012024 (2020).
  22. E. E. Gorodnichev, K. A. Kondratiev, and D. B. Ro-gozkin, Phys. Rev. B 105, 104208 (2022).
  23. Е. Е. Городничев, Д. Б. Рогозкин, Письма в ЖЭТФ 118, 30 (2023).
  24. А. А. Голубенцев, Изв. ВУЗов. Радиофизика 27, 734 (1984).
  25. А. А. Голубенцев, ЖЭТФ 86, 47 (1984).
  26. F. C. MacKintosh and S. John, Phys. Rev. B 37, 1884 (1988).
  27. V. Gasparian and Zh. S. Gevorkian, Phys. Rev. A 87, 053807 (2013).
  28. M. A. Kozhaev, R. A. Niyazov, and V. I. Belotelov, Phys. Rev. A 95, 023819 (2017).
  29. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials, Institute of Physics Publishing, (1997), p. 404.
  30. M. I. Mishchenko, Electromagnetic Scattering by Particles and Particle Groups, Cambridge University Press, Cambridge (2014).
  31. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, ЖЭТФ 131, 357 (2007).
  32. E. E. Gorodnichev, A.I. Kuzovlev, and D. B. Rogoz-kin, Phys. Rev. E 90, 043205 (2014).
  33. Р. Ньютон, Теория рассеяния волн и частиц, Мир, Москва (1969).
  34. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D.A. Weitz, Phys. Rev. B 40, 9342 (1989).
  35. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
  36. Е. Е. Городничев, А. И. Кузовлев, Д. Б. Рогозкин, КЭ 46, 947 (2016).
  37. M.K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Saenz, Phys. Rev. Lett. 114, 113902 (2015).
  38. P. Laven, Appl.Opt. 42, 436 (2003).
  39. A. A. Chabanov, Z. Q. Zhang, and A. Z. Genack, Phys. Rev. Lett. 90, 203903 (2003).
  40. H. Cao, A. P. Mosk, and S. Rotter, Nature Physics 18, 994 (2022).
  41. Л.Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
  42. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
  43. S. Kumari and S. Chakraborty, J. Sens. Sens. Syst. 7, 421 (2018).
  44. D. Vojna, O. Slezak, A. Lucianetti, and T. Mocek, Appl. Sci. 9, 3160 (2019).
  45. А. Исимару, Распространение и рассеяние волн в случайно-неоднородных средах, Мир, Москва (1981), т. 1.
  46. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium, Springer Verlag (1991).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences