GENERALIZED EINSTEIN – ROSEN BRIDGE INSIDE BLACK HOLES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We generalize the notion of Einstein – Rosen bridge by defining it as a space-ilke connection between two universes with regions of asymptotically minkowskian space-time infinities. The corresponding symmetry and asymmetry properties of the generalized Einstein – Rosen bridge are considered at the cases of Reissner – Nordström and Kerr metrics. We elucidate the versatility of intriguing symmetry and asymmetry phenomena outside and inside black holes. For description of the test particle (planet and photon) motion it is used the Kerr–Newman metric of the rotating and electrically charged black hole. It is demonstrated the symmetry and asymmetry of the one-way Einstein – Rosen bridge inside black hole space-time toward and through the plethora of endless and infinite universes.

About the authors

V. I. Dokuchaev

Institute for Nuclear Research of the Russian Academy of Sciences

Email: dokuchaev@inr.ac.ru
Moscow, Russia

K. E. Prokopev

Institute for Nuclear Research of the Russian Academy of Sciences

Email: d1vais@yandex.ru
Moscow, Russia

References

  1. R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).
  2. S. Carroll, An Introduction to General Relativity, new international edition, Pearson (2014), p. 257.
  3. V. Ullmann, Gravity, Black Holes and the Physics of Time-Space; Czechoslovak Astronomic Society, CSAV, Ostrava, (Online version in English: https://astronuclphysics.info/GravitCerneDiry.htm) (1986).
  4. Y. Giirsel, V. D. Sandberg, I. D. Novikov, and A.A. Starobinskij, Phys. Rev. D 19, 413 (1979).
  5. M. Simpson and R. Penrose, Int. J. Theor. Phys. 7, 183 (1973).
  6. R. DeMott, S. DeMott, and A. DeMott, Class. Quant. Grav. 39, 195015 (2022).
  7. D. Abramson, Thai J. of Phys. 38, 69 (2021).
  8. C. Dyson and M. van de Meent, Class. Quant. Grav. 40, 195026 (2023).
  9. R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
  10. B. Carter, Phys. Rev. 174, 1559 (1968).
  11. I. D. Novikov, and K. S. Thorne, in Black Holes, ed. by C. DeWitt and B. S. DeWitt, Gordon and Breach, New York (1973), p. 343.
  12. C.W. Misner, K. S. Thorne, and J. A.Wheeler, Gravitation, W. H. Freeman, San Francisco, CA, USA (1973).
  13. S. Chandrasekhar, The Mathematical Theory of Black Holes, in The International Series of Monograph on Physics, Clarendon Press, Oxford (1983), Vol. 69, Chap. 7.
  14. R. Penrose, Structure of Space-Time. Battelle Rencontres 1967. Lectures in Mathematical Physics, Chap. VII, ed. by C. M. Dewitt and J. A. Wheeler, W. A.Benjamin, Inc., New York–Amsterdam (1968), Chap. 2.
  15. J. M. Bardeen, in Black Holes, ed. by C. DeWitt and B. S. DeWitt, Gordon and Breach Science Publishers, New York (1973), p. 215.
  16. Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics, Part 1, Basics, Elsevier Science, Amsterdam (1977), Chap.V.
  17. R. M.Wald, General Relativity, The Univ. of Chicago Press, Chicago (1984).
  18. S. W. Hawking, and G. F. R. Ellis, The Large–Scale Structure of Space–Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge (2011).
  19. J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation, Astrophys. J. 178, 347 (1972).
  20. J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys. 31, 161 (1973).
  21. T. P. Kling, E. Grotzke, K. Roebuck, and H.Roebuck, Gen. Rel. Grav. 51, 32 (2019).
  22. E. O. Babichev, V. I. Dokuchaev, and Yu. N. Eroshenko, Uspekhi Fiz. Nauk 183 1257 (2013) [Phys. Usp. 56, 1155 (2013)].
  23. V. I. Dokuchaev, GRG 46, 1832 (2014).
  24. V. I. Dokuchaev and Yu. N. Eroshenko, Uspekhi Fiz. Nauk 185 829 (2015) [Phys. Usp. 58, 772 (2015)].
  25. V. I. Dokuchaev and Yu. N. Eroshenko, Pisma JETP 101, 875 (2015) [JETP Lett. 101, 777 (2015)].
  26. V. I. Dokuchaev and N. O. Nazarova, J. High Energy Phys. Lett. 106, 637 (2017).
  27. V. I. Dokuchaev and N. O. Nazarova, https://youtu.be/P6DneV0vk7U (2017).
  28. V. I. Dokuchaev and N. O. Nazarova, ZhETF 155, 677 (2019) [JETP 128, 578 (2019)].
  29. V. I. Dokuchaev, N. O. Nazarova, and V. P. Smirnov, GRG 51, 81 (2019).
  30. V. I. Dokuchaev, and N. O. Nazarova, Universe 5, 183 (2019).
  31. V. I. Dokuchaev, IJMPD 28, 1941005 (2019).
  32. V. I. Dokuchaev, and N. O. Nazarova, https://youtu.be/fps-3frL0AM (2019).
  33. J. A. Wheeler, Geometrodynamics, Academic Press, New York (1962).
  34. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
  35. J. Bičak, Z. Stuchlik, and V. Balek, Bull. Astron. Inst. Czech. 40, 65 (1989).
  36. V. Balek, J. Bičak, and Z. Stuchlik, Bull. Astron. Inst. Czech. 40, 133 (1989).
  37. S. Grunau and S. Kagramanova, Phys. Rev. D 83, 044009 (2011).
  38. M. Olivares, J. Saavedra, C. Leiva, and J. R. Villanueva, Mod. Phys. Lett. A 26, 2923 (2011).
  39. E. Hackmann, V. Kagramanova, J. Kunz, and C. Lam¨ merzahl, Phys. Rev. D 81, 044020 (2010).
  40. D. Pugliese, H. Quevedo, and R. Ruffini, Phys. Rev. D 83, 024021, 23pp. (2011).
  41. V. I. Dokuchaev, CQG 28, 235015 (2008).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences