Melting Scenarios of Two-Dimensional Systems: Possibilities of Computer Simulation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Modern theories of melting of two-dimensional systems are discussed that are mainly based on the concepts of the Berezinskii–Kosterlitz–Thouless (BKT) theory of phase transitions in two-dimensional systems with continuous symmetry. Today there exist three basic scenarios of melting of two-dimensional crystals. First of all, this is the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young (BKTHNY) theory, in which two-dimensional crystals are melted through two BKT-type continuous transitions with an intermediate hexatic phase. In this case a first-order phase transition can also occur. The third scenario has recently been proposed by Bernard and Krauth (BK), in which melting can occur through a BKT-type transition; in this case the hexatic phase–isotropic fluid transition is a first-order transition. The review presents a critical analysis of the approaches used to determine the parameters and the type of transition by computer simulation methods.

作者简介

V. RYZHOV

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russia

Email: fomin314@mail.ru
Troitsk, Moscow, 108840 Russia

E. Gayduk

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Email: ryzhov@hppi.troitsk.ru
Troitsk, Moscow, 108840 Russia

E. Tareeva

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Email: ryzhov@hppi.troitsk.ru
Troitsk, Moscow, 108840 Russia

Yu. Fomin

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

Email: ryzhov@hppi.troitsk.ru
Troitsk, Moscow, 108840 Russia

E. Tsiok

Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ryzhov@hppi.troitsk.ru
Troitsk, Moscow, 108840 Russia

参考

  1. В. Л. Березинский ЖЭТФ 59, 907 (1970)
  2. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).
  3. В. Л. Березинский, ЖЭТФ 61, 1144 (1971)
  4. V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).
  5. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 5, L124 (1972).
  6. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
  7. J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).
  8. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
  9. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).
  10. В. Н. Рыжов, Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок, УФН 187, 921 (2017)
  11. V. N. Ryzhov, E. E. Tareyeva, Y. D. Fomin and E. N. Tsiok, Phys.-Usp. 60, 857 (2017).
  12. В. Н. Рыжов, УФН 187, 125 (2017)
  13. V. N. Ryzhov, Phys.-Usp. 60, 114 (2017).
  14. J. M. Kosterlitz, Rep. Prog. Phys. 79, 026001 (2016).
  15. Years of Berezinskii-Kosterlitz-Thouless Theory, ed. by J. V. Jose, World Scienti c, Singapore (2013).
  16. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41 121 (1978).
  17. D. R. Nelson and B. I. Halperin, Phys. Rev. B. 19, 2457 (1979).
  18. A. P. Young, Phys. Rev. B 19, 1855 (1979).
  19. В. Н. Рыжов, Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок, УФН 190, 449 (2020)
  20. V. N. Ryzhov, E. E. Tareyeva, Y. D. Fomin and E. N. Tsiok, Phys.-Usp. 63, 417 (2020).
  21. V. N. Ryzhov, E. A. Gaiduk, E. E. Tareyeva, Yu. D. Fomin and E. N. Tsiok, Phys. Part. and Nuclei 51, 786 (2020).
  22. K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
  23. N. Shankaraiah, S. Sengupta and G. I. Menon, J. Chem. Phys. 151, 124501 (2019).
  24. D. Du, M. Doxastakis, E. Hiloua and S. L. Biswal, Soft Matter 13, 1548 (2017).
  25. L. A. Padilla and A. Ramirez-Hernandez, J. Phys.: Condens. Matter 32, 275103 (2020).
  26. H. Arjun and P. Chaudhuri, J. Phys.: Condens. Matter 32, 414001 (2020).
  27. P. Dillmann, G. Maret and P. Keim, J. Phys.: Condens. Matter 24, 464118 (2012).
  28. K. Zahn and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).
  29. S. A. Khrapak, Phys. Rev. Res. 2, 012040(R) (2020).
  30. W. D. Pineros, M. Baldea and Th. M. Truskett, J. Chem. Phys. 145, 054901 (2016).
  31. Z. Krebs, A. B. Roitman, L. M. Nowack, C. Liepold, B. Lin and S. A. Rice, J. Chem. Phys. 149, 034503 (2018).
  32. V. V. Hoang and N. T. Hieu, J. Phys. Chem. C 120, 18340 (2016).
  33. S. Khrapak, J. Chem. Phys. 148, 146101 (2018).
  34. H. Schmidle, C. K. Hall, O. D. Velev and S. H. L. Klapp, Soft Matter 8, 1521 (2012).
  35. N. Shankaraiah, S. Sengupta and G. I. Menon, J. Phys.: Condens. Matter 32, 184003 (2020).
  36. J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel and S. C. Glotzer, Phys. Rev. X 7, 021001 (2017).
  37. L. A. Padilla, A. A. Leon-Islas, J. Funkhouser, J. C. Armas-Perez and A. Ramirez-Hernandez, J. Chem. Phys. 155, 214901 (2021).
  38. L. Nowack and S. A. Rice, J. Chem. Phys. 151, 244504 (2019).
  39. W. D. Pineros, M. Baldea and T. M. Truskett, J. Chem. Phys. 145, 054901 (2016).
  40. A. Jain, J. R. Errington and T. M. Truskett, Phys. Rev. X 4, 031049 (2014).
  41. Y. Chen, X. Tan, H. Wang, Z. Zhang, J. M. Kosterlitz and X. S. Ling, Phys. Rev. Lett. 127, 018004 (2021).
  42. D. S. Cardoso, V. F. Hernandes, T. P. O. Nogueira and J. R. Bordin, Physica A 566, 125628 (2021).
  43. G. Campos-Villalobos, M. Dijkstra and A. Patti, Phys. Rev. Lett. 126, 158001 (2021).
  44. A. M. Almudallal, S. V. Buldyrev and I. Saika-Voivod, J. Chem. Phys. 137, 034507 (2012).
  45. S. A. Rice, Chem. Phys. Lett. 479, 1 (2009).
  46. P. Keim, G. Maret and H. H. von Grunberg, Phys. Rev. E 75, 031402 (2007).
  47. P. Keim, G. Maret, U. Herz and H. H. von Grunberg, Phys. Rev. Lett. 92, 215504 (2004).
  48. S. Deutschlander et al., Phys. Rev. Lett. 111, 098301 (2013).
  49. T. Horn et al., Phys. Rev. E 88, 062305 (2013).
  50. J. Zanghellini, P. Keim and H. H. von Grunberg, J. Phys.: Condens. Matter 17, S3579 (2005).
  51. S. Deutschlander, A. M. Puertas, G. Maret and P. Keim, Phys. Rev. Lett. 113, 127801 (2014).
  52. E. V. Vasilieva, O. F. Petrov and M. M. Vasiliev, Sci. Rep. 11, 523 (2021).
  53. O. S. Vaulina and X. G. Kossa, Phys. Lett. A 378, 3475 (2014).
  54. X. S. Koss and O. S. Vaulina, J. Phys.: Conference Series 653, 012103 (2015).
  55. X. Qi, Y. Chen, Y. Jin and Y.-H. Yang, J. Korean Phys. Soc. 49, 1682 (2006).
  56. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 27, 1208 (1957).
  57. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 33, 1439 (1960).
  58. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 31, 459 (1959).
  59. B. J. Alder and A. W. Wainwright, Phys. Rev. 127, 359 (1962).
  60. J. A. Zollweg and G. V. Chester, Phys. Rev. B 46, 11186 (1992).
  61. H. Weber and D. Marx, Europhys. Lett. 27, 593 (1994).
  62. M. P. Allen, D. Frenkel and W. Gignac, J. Chem. Phys. 78, 4206 (1983).
  63. A. D. Novaco and P. A. Shea, Phys. Rev. B 26, 284 (1982).
  64. F. F. Abraham, Phys. Rev. Lett. 44, 463 (1980).
  65. J. A. Barker, D. Hendersen and F. F. Abraham, Physica A 106, 226 (1981).
  66. S. Toxvaerd, Phys. Rev. Lett. 44, 1002 (1980).
  67. J. Q. Broughton, G. H. Gilmer and J. D. Weeks, Phys. Rev. B 25, 4651 (1982).
  68. H. Weber, D. Marx and K. Binder, Phys. Rev. B 51, 14636 (1995).
  69. C. H. Mak, Phys. Rev. E 73, 065104 (2006).
  70. J. J. Alonso and J. F. Fernandez, Phys. Rev. E 59, 2659 (1999).
  71. J. Lee and K. J. Strandburg, Phys. Rev. B 46, 11190 (1992).
  72. J. F. Fernandez, J. J. Alonso and J. Stankiewicz, Phys. Rev. Lett. 75, 3477 (1995).
  73. K. Binder, S. Sengupta and P. Nielaba, J. Phys.: Condens. Matter 14, 2323 (2002).
  74. W. Qi, A. P. Gantapara and M. Dijkstra, Soft Matter 10, 5449 (2014).
  75. J.Russo and N. B. Wilding, Phys. Rev. Lett. 119, 115702 (2017).
  76. A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts and R. P. A. T. Dullens, Phys. Rev. Lett. 118, 158001 (2017).
  77. P. S.Ruiz, Q.-L. Lei and R. Ni, Commun. Phys. 2, 70 (2019).
  78. X. Xu and S. A. Rice, Phys. Rev. E 78, 011602 (2008).
  79. D. Abutbul and D. Podolsky, Phys. Rev. Lett. 128, 255501 (2022).
  80. E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011).
  81. М. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard and W. Krauth, Phys. Rev. E 87, 042134 (2013).
  82. J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 (1991).
  83. D.E.Dudalov, Yu.D. Fomin, E.N.Tsiok and V.N. Ryzhov, J. Phys.: Conference Series 510, 012016 (2014).
  84. D.E. Dudalov, Yu.D. Fomin, E.N. Tsiok and V.N.Ryzhov, J.Chem.Phys 141, 18C522 (2014).
  85. D.E. Dudalov, Yu.D.Fomin, E.N. Tsiok and V.N. Ryzhov, Soft Matter 10, 4966 (2014).
  86. E.N. Tsiok, D.E. Dudalov, Yu.D. Fomin and V.N.Ryzhov, Phys.Rev.E 92, 032110 (2015).
  87. N.P. Kryuchkov, S.O. Yurchenko, Yu.D. Fomin, E.N. Tsiok and V.N. Ryzhov, Soft Matter 14, 2152 (2018).
  88. Y.D. Fomin, E.N. Tsiok and V.N. Ryzhov, Physica A 527, 121401 (2019).
  89. A. Mendoza-Coto, V. Mattiello, R. Cenci, N. Defenu and L. Nicolao, arXiv:2209.02802v1 (2022).
  90. S. Prestipino, F. Saija and P.V. Giaquinta, Phys. Rev.Lett. 106, 235701 (2011).
  91. S. Prestipino and F. Saija, J.Chem. Phys. 141, 184502 (2014).
  92. Yu.D. Fomin, V.N. Ryzhov and N.V. Gribova, Phys. Rev.E 81, 061201 (2010).
  93. J.C. Pamies, A. Cacciuto and D. Frenkel, J.Chem. Phys. 131, 044514 (2009).
  94. B.K. Mandal and P. Mishra, Mol. Phys. 118, e1706774 (2020).
  95. W. L. Miller and A. Cacciuto, Soft Matter 7, 7552 (2011).
  96. M. Zu, J. Liu, H. Tong and N. Xu, Phys.Rev.Lett. 117, 085702 (2016).
  97. T. Terao, J.Chem.Phys. 139, 134501 (2013).
  98. Yu.D. Fomin, E.A.Gaiduk, E.N.Tsiok and V.N.Ryzhov, Molecular Phys. 116, 3258 (2018).
  99. E.N.Tsiok, Yu.D.Fomin, E.A.Gaiduk and V.N.Ryzhov, Phys.Rev.E 103, 062612 (2021).
  100. E.N.Tsiok, E.A.Gaiduk, Yu.D. Fomin and V.N.Ryzhov, Soft Matter 16, 3962 (2020).
  101. E.A. Gaiduk, Y.D. Fomin, E.N. Tsiok and V.N. Ryzhov, Phys.Rev.E 106, 024602 (2022).
  102. I. Roy, S. Dutta, A.N.R. Choudhury, S. Basistha, I. Maccari, S. Mandal, J. Jesudasan, V. Bagwe, C. Castellani, L. Benfatto and P. Raychaudhuri, Phys.Rev.Lett. 122, 047001 (2019).
  103. M. Franz and S. Teitel, Phys.Rev.B 51, 6551 (1995).
  104. В.Н. Рыжов, Е.Е. Тареева, ЖЭТФ 108, 2044 (1995)
  105. V.N. Ryzhov and E. E. Tareyeva, JETP 81, 1115 (1995).
  106. S.C. Ganguli, H. Singh, I. Roy, V. Bagwe, D. Bala, A. Thamizhavel and P. Raychaudhuri, Phys.Rev.B 93, 144503 (2016).
  107. I. Guillamon, H. Suderow, A. Fernandez-Pacheco, J. Sese, R. Cordoba, J.M. De Teresa, M.R. Ibarra and S. Vieira, Nature Phys. 5, 651 (2009).
  108. M. Gabay and A. Kapitulnik, Phys.Rev. Lett. 71, 2138 (1993).
  109. M.A. Altvater, N. Tilak, S. Rao, G. Li, C.-J. Won, S.-W. Cheong and E.Y. Andrei, Nano Lett. 21, 6132 (2021).
  110. D.A. Garanin and E.M. Chudnovsky, Phys.Rev.B 107, 014419 (2023).
  111. P. Huang, T. Schonenberger, M. Cantoni, L. Heinen, A. Magrez, A. Rosch, F. Carbone and H.M. Ronnow, Nature Nanotechnol. 15, 761 (2020).
  112. A.R.C. McCray, Y. Li, R. Basnet, K. Pandey, J. Hu, J. Phelan, X. Ma, A.K. Petford-Long and C. Phatak, Nano Lett. 22, 7804 (2022).
  113. J. Zubeltzu, F. Corsetti, M.V. Fernandez-Serra and E. Artacho, Phys.Rev.E 93, 062137 (2016).
  114. V. Kapil, C. Schran, A. Zen, J. Chen, C. J. Pickard and A. Michaelides, Nature 609, 512 (2022).
  115. T. Mithun, S.C. Ganguli, P. Raychaudhuri and B. Dey, Europhys.Lett. 123, 20004 (2018).
  116. D. Frenkel and J. P. McTague, Phys.Rev.Lett. 42, 1632 (1979).
  117. S. Toxvaerd, J.Chem. Phys. 69, 4750 (1978).
  118. F. F. Abraham, Phys.Rev. Lett. 44, 463 (1980).
  119. J.M. Phillips, L.W. Bruch and R.D. Murphy, J.Chem.Phys. 75, 5097 (1981).
  120. A. F. Bakker, C. Bruin and H. J. Hilhorst, Phys.Rev. Lett. 52, 449 (1984).
  121. K. J. Strandburg, J.A. Zollweg and G.V. Chester, Phys.Rev.B 30, 2755 (1984).
  122. A. Hajibabaei and K. S. Kim, Phys.Rev.E 99, 022145 (2019).
  123. Y.-W. Li and M. P. Ciamarra, Phys.Rev.E 102, 062101 (2020).
  124. Y.-W. Li and M.P. Ciamarra, Phys.Rev. Lett. 124, 218002 (2020).
  125. H. Zhang, S. Peng, L. Mao, X. Zhou, J. Liang, C. Wan, J. Zheng and X. Ju, Phys.Rev.E 89, 062410 (2014).
  126. K. Wierschem and E. Manousakis, Phys.Rev.B 83, 214108 (2011).
  127. E.N. Tsiok, Y.D. Fomin, E.A. Gaiduk, E.E. Tareyeva, V.N. Ryzhov, P.A. Libet, N.A. Dmitryuk, N.P. Kryuchkov and S.O. Yurchenko, J.Chem.Phys. 156, 114703 (2022).
  128. A. Hajibabaei and K. S. Kim, Phys.Rev.E 99, 022145 (2019).
  129. S. S. Khali, D. Chakraborty and D. Chaudhuri, Soft Matter 17, 3473 (2021).
  130. А. З. Паташинский, В.Л. Покровский Флуктуационная теория фазовых переходов, Наука, Москва (1982)
  131. A. Z. Patashinskii, V. L. Pokrovskii Fluctuation Theory of Phase Transitions Pergamon Press, Oxford (1979).
  132. A.P. Young, J.Phys.C 11, L453 (1978).
  133. J.M. Kosterlitz, J.Phys.C 7, 1046 (1974).
  134. T. Ohta, Prog.Theor. Phys. 60, 968 (1978).
  135. P.B. Wiegman, J.Phys.C 11, 1583 (1978).
  136. D. J. Amit, Y.Y. Goldschmidt and G. Grinstein, J. Phys.A 13, 585 (1980).
  137. P.M. Chaikin and T.C. Lubensky, Principles of condensed matter physics, Cambridge University Press (1995).
  138. I. Herbut, A modern approach to critical phenomena, Cambridge University Press (2007).
  139. D.R. Nelson and J.M. Kosterlitz, Phys.Rev.Lett. 39, 1201 (1977).
  140. V. Ambegaokar, B. I. Halperin, D.R. Nelson and E.D. Siggia, Phys.Rev.Lett. 40, 576 (1978).
  141. B.A. Huberman, R. J. Myerson and S. Doniach, Phys.Rev.Lett. 40, 780 (1978).
  142. D. J. Bishop and J.D. Reppy, Phys.Rev. Lett. 40, 1727 (1978).
  143. I. Rudnik, Phys.Rev. Lett. 40, 1454 (1978).
  144. J.G. Dash, Phys.Rev. Lett. 41, 1178 (1978).
  145. S. Tung, G. Lamporesi, D. Lobser, L. Xia and E.A. Cornel, Phys.Rev. Lett. 105, 230408 (2010).
  146. C.-L. Huang, X. Zhang, N. Gemelke and C. Chin, Nature 470, 236 (2011).
  147. P. Clade, C. Ryu, A. Ramanathan, K. Helmerson and W.D. Phillips, Phys.Rev. Lett. 102, 170401 (2009).
  148. S.P. Rath, T. Yefsah, K. J. Gunter, M.M. Cheneau, R. Desbuquois, M. Holzmann, W. Krauth and J. Dalibard, Phys.Rev.A 82, 013609 (2010).
  149. M.R. Beasley, J. E. Mooij and T.P. Orlando, Phys.Rev.Lett. 42, 1165 (1979).
  150. J. Pearl, Appl.Phys.Lett. 5, 65 (1964).
  151. D.Y. Irz, V.N. Ryzhov and E.E. Tareyeva, Phys. Lett.A 207, 374 (1995).
  152. V.N. Ryzhov and E. E. Tareyeva, Phys.Rev.B 48, 12907 (1993).
  153. V.N. Ryzhov and E. E. Tareyeva, Phys.Rev.B 49, 6162 (1994).
  154. D.Y. Irz, V.N. Ryzhov and E.E. Tareyeva, Phys. Rev.B 54, 3051 (1996).
  155. В.Н. Рыжов, Е. Е. Тареева, ТМФ 96, 425 (1993).
  156. Д.Ю. Ирз, В.Н. Рыжов, Е. Е. Тареева, ТМФ 104, 337 (1995).
  157. Д.Ю. Ирз, В.Н. Рыжов, Е. Е. Тареева, ТМФ 107, 100 (1996).
  158. J.M. Hsu and A. Kapitulnik, Phys.Rev.B 45, 4819 (1992).
  159. I. Guillamon, R. Cordoba, J. Sese et al. Nature Phys. 10, 851 (2014).
  160. A. F. Hebard and A.T. Fiory, Phys.Rev.Lett. 50, 1603 (1983).
  161. P.G. Baity, Xiaoyan Shi, Zhenzhong Shi, L. Benfatto and Dragana Popovic, Phys.Rev.B 93, 024519 (2016).
  162. L. Benfatto, C. Castellani and T. Giamarchi, Phys. Rev.B 77, 100506(R) (2008).
  163. Yen-Hsiang Lin, J. Nelson and A.M. Goldman, Phys. Rev.Lett. 109, 017002 (2012).
  164. F. Leoni and G. Franzese, J.Chem.Phys. 141, 174501 (2014).
  165. S.A. Rice, Chem.Phys. Lett. 479, 1 (2009).
  166. Z. Krebs, A.B. Roitman, L.M. Nowack, C. Liepold, B. Lin and S.A. Rice, J.Chem.Phys. 149, 034503 (2018).
  167. E.N. Tsiok, Yu.D. Fomin and V.N. Ryzhov, Physica A 550, 124521 (2020).
  168. L.A. Padilla and A. Ramirez-Hernandez, J. Phys.: Condensed Matter 32, 275103 (2020).
  169. D. S. Cardoso, V. F. Hernandes, P.T.O. Nogueira and J.R. Bordin, Physica A 566, 125628 (2021).
  170. F. Martelli, H.-Y. Ko, C. Calero and G. Franzese, Front.Phys. 13, 136801 (2018).
  171. A. Jain, J.R. Errington and Th.M. Truskett, Phys. Rev.X 4, 031049 (2014).
  172. E. Marcotte, F. H. Stillinger and S. Torquato, J.Chem.Phys. 134, 164105 (2011).
  173. W. D. Pineros, M. Baldea and T. M. Truskett, J.Chem.Phys. 145, 054901 (2016).
  174. M. Engel and H.-R. Trebin, Phys.Rev.Lett. 98, 225505 (2007).
  175. T. Dotera, T. Oshiro and P. Ziherl, Nature 506, 208 (2014).
  176. H. Pattabhiraman and M. Dijkstra, J.Chem.Phys. 146, 114901 (2017).
  177. S.C. Kapfer and W. Krauth, Phys.Rev. Lett. 114, 035702 (2015).
  178. S.T. Chui, Phys.Rev.B 28, 178 (1983).
  179. K. J. Strandburg, Phys.Rev.B 34, 3536 (1986).
  180. В.Н. Рыжов, ЖЭТФ 100, 1627 (1991)
  181. V.N. Ryzhov, Sov.Phys. JETP 73, 899 (1991).
  182. В.Н. Рыжов, ТМФ 88, 449 (1991)
  183. V.N. Ryzhov, Theor.Math.Phys. 88, 990 (1991).
  184. V.N. Ryzhov and E.E. Tareyeva, Phys.Lett.A 75, 88 (1979).
  185. В.Н. Рыжов, Е. Е. Тареева, ТМФ 48, 416 (1981)
  186. V.N. Ryzhov and E. E. Tareyeva, Theor.Math.Phys. 48, 835 (1981).
  187. V.N. Ryzhov and E. E. Tareyeva, Phys.Rev.B 51, 8789 (1995).
  188. V.N. Ryzhov and E.E. Tareyeva, Physica A 314, 396 (2002).
  189. E.S.Chumakov, Y.D.Fomin, E.L. Shangina, E.E.Tareyeva, E.N. Tsiok and V.N. Ryzhov, Physica A 432, 279 (2015).
  190. В.Н. Рыжов, Е.Е. Тареева, ТМФ 200, 147 (2019)
  191. V.N. Ryzhov and E. E. Tareyeva, Theor.Math.Phys. 200, 1053 (2019).
  192. В.Н. Рыжов, ТМФ 55, 128 (1983); V.N. Ryzhov, Theor.Math.Phys. 55, 399 (1983).
  193. Л.М. Помирчи, В.Н. Рыжов, Е.Е. Тареева, ТМФ 130, 119 (2002)
  194. L.M. Pomirchi, V.N. Ryzhov and E. E. Tareyeva, Theor.Math.Phys. 130, 101 (2002).
  195. V.N. Ryzhov and E.E. Tareyeva, Physica A 314, 396 (2002).
  196. E. P. Bernard, W. Krauth and D.B. Wilson, Phys. Rev.E 80, 056704 (2009).
  197. W. Qi, A.P. Gantapara and M. Dijkstra, Soft Matter 10, 5449 (2014).
  198. W.K. Qi, S.M. Qin, X.Y. Zhao and Chen Yong, J. Phys.: Condens.Matter 20, 245102 (2008).
  199. W. Qi and M. Dijkstra, Soft Matter 11, 2852 (2015).
  200. E.N. Tsiok, Y.D. Fomin and V.N. Ryzhov, Physica A 490, 819 (2018).
  201. E.A. Gaiduk, Y.D. Fomin, E.N. Tsiok and V.N. Ryzhov, Molecular Phys. 117, 2910 (2019).
  202. J. E. Mayer and W.W. Wood, J.Chem. Phys. 42, 4268 (1965).
  203. D.R. Nelson, Phys.Rev.B 27, 2902 (1983).
  204. S. Sachdev and D.R. Nelson, J. Phys.C 17, 5473 (1984).
  205. А.Б. Дзюбенко, Ю. Е. Лозовик, ЖЭТФ 102, 284 (1992)
  206. A.B. Dzyubenko and Y.E. Lozovik, Sov.Phys. JETP 75, 149 (1992).
  207. M. Cha and H.A. Fertig, Phys.Rev.Lett. 74, 4867 (1995).
  208. S. Herrera-Velarde and H.H. von Grunberg, Soft Matter 5, 391 (2009).
  209. http://lammps.sandia.gov/; S. Plimpton, J.Comp. Phys. 117, 1 (1995).
  210. J.Q. Broughton, G.H. Gilmer and J.D. Weeks, Phys. Rev.B 25, 4651 (1982).
  211. S. Sengupta, P. Nielaba and K. Binder, Phys.Rev.E 61, 6294 (2000).
  212. S. Sengupta, P. Nielaba, M. Rao and K. Binder, Phys.Rev.E 61, 1072 (2000).
  213. D. S. Fisher, B. I. Halperin and R. Morf, Phys. Rev.B: Condens.Matter Mater. Phys. 20, 4692 (1979).
  214. K. Binder, Z. Physik B 43, 119 (1981).
  215. K. Binder, Phys.Rev. Lett. 47, 693 (1981).
  216. M. S. S. Challa, D.P. Landau and K. Binder, Phys. Rev.B 34, 1841 (1986).
  217. K. Binder, Ferroelectrics 73, 43 (1987).
  218. M. S. S. Challa and D.P. Landau, Phys.Rev.B 33, 437 (1986).
  219. E. Rastelli, S. Regina and A. Tassi, J.Magn.Magn. Mater. 272-276, 997 (2004).
  220. A.K. Murtazaev and A.B. Babaev, J.Magn.Magn. Mater. 324, 3870 (2012).
  221. А.Б. Бабаев, М.А. Магомедов, А.К. Муртазаев, Ф.А. Кассан-Оглы, А.И. Прошкин, ЖЭТФ 149, 357 (2016).
  222. A.K. Murtazaev and A.B. Babaev, Mater. Lett. 258, 126771 (2020).
  223. K. S. Murtazaev, A.K. Murtazaev, M.K. Ramazanov, M.A. Magomedov and A.A. Murtazaeva, Low Temp.Phys. 47, 515 (2021).
  224. A.K. Murtazaev, D.R. Kurbanova and M.K. Ramazanov, Physica A 545, 123548 (2020).
  225. А.К. Муртазаев, А.Б. Бабаев, ЖЭТФ 159, 1041 (2021).
  226. K. Vollmayr, J.D. Reger, M. Scheucher and K. Binder, Z.Phys.B 91, 113 (1993).
  227. K. Eichhorn and K. Binder, Journal of Physics: Condensed Matter 8, 5209 (1996).
  228. C. Borgs and R. Kotecky, J. Stat.Phys. 61, 79 (1990).
  229. C. Borgs and R. Kotecky, Phys.Rev. Lett. 68, 1738 (1992).
  230. Yu.E. Lozovik and V.M. Farztdinov, Sol. State Commun. 54, 725 (1985).
  231. Y.E. Lozovik, V.M. Farztdinov, B. Abdullaev and S.A. Kucherov, Phys. Lett.A 112, 61 (1985).
  232. V. Bedanov, G. Gadiyak and Y.E. Lozovik, Phys. Lett.A 109, 289 (1985).
  233. F. Lindemann, Z.Phys. 11, 609 (1910).
  234. P.M. Platzman and H. Fukuyama, Phys.Rev.B 10, 3150 (1974).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023