Laser Cooling of 171Yb+ Ion in Polychromatic Light Field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Standard methods of laser cooling 171Yb+ in a radiofrequency trap involve the use of coherent optical fields resonant to the optical transition of the 2S1/2 → 2P1/2 line, as well as a magnetic field that is used to destroy the coherent population trapping (CPT) appeared at the 2S1/2(F = 1) level. Further precision measurements with use of the clock transitions (quadrupole 2S1/2(F = 0) → 2D3/2(F = 2) and octupole 2S1/2(F = 0) → 2F7/2(F = 2)) require significant suppression and control of residual magnetic fields. In this work, we investigate in detail an alternative method of laser cooling 171Yb+ with use of polychromatic fields, which allows completely eliminate the use of a magnetic field in the ion cooling process and thus suppress Zeeman quadratic shift associated with uncontrolled residual magnetic fields.

作者简介

D. Krysenko

Institute of Laser Physics, Russian Academy of Sciences;Novosibirsk State University

Email: oleg.nsu@gmail.com
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

O. Prudnikov

Novosibirsk State University;Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: viyudin@mail.ru
Novosibirsk, 630090 Russia;Novosibirsk, 630090 Russia

参考

  1. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).
  2. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016).
  3. Y. Huang, H. Guan, P. Liu, W. Bian, L. Ma, K. Liang, T. Li, and K. Gao, Phys. Rev. Lett. 116, 01300 (2016).
  4. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, and H. Katori, Nat. Photonics 14, 411 (2020).
  5. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, and P. Delva, J. Geodesy 91, 597 (2017).
  6. W. F. McGrew, X. Zhang X, R. J. Fasano, S. A. Schaffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, Nature 564, 87 (2018).
  7. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, Phys. Rev. Lett. 113, 210801 (2014)
  8. N. Huntemann, B. Lipphardt, Chr. Tamm, V. Gerginov, S. Weyers, and E. Peik, Phys. Rev. Lett. 113, 210802 (2014).
  9. V. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Ha ner, Nature Phys. 12, 465 (2016).
  10. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, Nature 567, 204 (2019).
  11. L. S. Dreissen, C.-H. Yeh, H. A. Fu¨rst, K. C. Grensemann, T. E. Mehlst¨aubler, Nature Commun. 13, 7314 (2022).
  12. A. Arvanitaki, J. Huang, and K. V. Tilburg, Phys. Rev. D 91, 015015 (2015).
  13. Y. V. Stadnik and V. V. Flambaum, Phys. Rev. Lett. 115, 201301 (2015).
  14. O. N. Prudnikov, S. V. Chepurov, A. A. Lugovoy, K. M.Rumynin, S. N. Kuznetsov, A. V. Taichenachev, V. I. Yudin, and S. N. Bagayev, Quant. Electron. 47, 806 (2017).
  15. S. V. Chepurov, A. A. Lugovoy, O. N. Prudnikov, A. V. Taichenachev, and S. N. Bagayev, Quant. Electron. 49, 412 (2019).
  16. Н. В Семенин, А. С. Борисенко, И. В. Заливако, И. А. Семериков, М. Д. Аксенов, К. Ю. Хабарова, Н. Н. Колачевский, Письма в ЖЭТФ 116, 74 (2022).
  17. R. Grimm, Yu. B. Ovchinnikov, A. I. Sidorov, and V. S. Letokhov, Phys. Rev. Lett. 65, 3210 (1990).
  18. J. S¨oding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Phys. Rev. Lett. 78, 1420 (1997).
  19. O. N. Prudnikov, A. S. Baklanov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP 117, 222 (2013).
  20. O. N. Prudnikov, A. V. Taichenachev, and V. I. Yudin, Quant. Electron. 47, 438 (2017).
  21. C. Corder, B. Arnold, X. Hua, and H. Metcalf, JOSA B 32, B75 (2015).
  22. J. Dalibard and C. Cohen-Tannoudji, J. Phys. B. 18, 1661 (1985).
  23. J. Javanainen, Phys. Rev. A 44, 5857 (1991).
  24. O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP 88, 433 (1999).
  25. V. K. Khersonskii, A. N. Moskalev, and D. A. Varshalovich, Quantum Theory of Angular Momentum, World Scienti c, Singapore (1988).
  26. O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys. Rev. A 75, 023413 (2007).
  27. O. N. Prudnikov, R. Ya. Ilenkov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP 112, 939 (2011).
  28. A. V. Bezverbnyi, O. N. Prudnikov, A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, JETP 96, 383 (2003)
  29. A. V. Bezverbnyi, O. N. Prudnikov, A. V. Taichenachev, A. V. Tumaikin, and V. I. Yudin, JETP 101, 584 (2005).
  30. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scienti c (1990).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023