Monte Carlo Simulation of Energy Dissipation during the Cascade Decay of Inner-Shell Vacancies in an Iron Atom Placed in Water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have performed the Monte Carlo simulation of the processes of secondary ionization of water induced by cascade decays of inner-shell vacancies in an iron atom placed in water. We have obtained the spectra of electrons and photons emitted during the decay of vacancies in the K and L shells of the iron atom. The dependences of the number of secondary ionization events and the energy absorbed as a result of these processes on the radius of the sphere in which such processes occur have been calculated. The decay of a single 1s vacancy in an iron atom generates on the average 232 events of secondary ionization induced by an electron impact, in which the energy of 3274 eV is absorbed, as well as 18 secondary photoionization events, in which the energy of 256 eV is absorbed. The dependences of the dose absorbed in water on the distance from the iron atom have been calculated.

About the authors

A. P. Chaynikov

Rostov State Transport University

Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia

A. G. Kochur

Rostov State Transport University

Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia

A. I. Dudenko

Rostov State Transport University

Author for correspondence.
Email: chaynikov.a.p@gmail.com
344038, Rostov-on-Don, Russia

References

  1. A. Ku, V. J. Facca, Z. Cai, and R.M. Reilly, EJNMMI Radiopharm. Chem. 4, 27 (2019); DOI: https://doi.org/10.1186/s41181-019-0075-2
  2. Y. Liu, P. Zhang, F. Li, X. Jin, J. Li, W. Chen, and Q. Li, Theranostics 8, 1824 (2018); DOI: https://doi.org/10.7150/thno.22172
  3. A. P. Chaynikov, A. G. Kochur, A. I. Dudenko, I. D. Petrov, and V. A. Yavna, Phys. Scr. 98, 025406 (2023); DOI: https://doi.org/10.1088/1402-4896/acb407
  4. А. П. Чайников, А. Г. Кочур, А. И. Дуденко, В. А. Явна, Опт. и спектр. 131, 563 (2023); DOI: https://doi.org/10.21883/OS.2023.04.55563.4560-22
  5. T. A. Carlson and M. O. Krause, Phys. Rev. 137, A1655 (1965); DOI: https://doi.org/10.1103/PhysRev.137.A1655
  6. M.O.Krause, M. L.Vestal, W.H. Johnston, and T.A. Carlson, Phys. Rev. 133, A385 (1964); DOI: https://doi.org/10.1103/PhysRev.133.A385
  7. M. O. Krause and T. A. Carlson, Phys. Rev. 149, 52 (1966); DOI: https://doi.org/10.1103/PhysRev.149.52
  8. T. Mukoyama, T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, and H. Tawara, J. Phys. B At. Mol. Phys. 20, 4453 (1987); DOI: https://doi.org/10.1088/0022-3700/20/17/023
  9. M. N. Mirakhmedov and E. S. Parilis, J. Phys. B At. Mol. Opt. Phys. 21, 795 (1988); DOI: https://doi.org/10.1088/0953-4075/21/5/010
  10. A. El-Shemi, Y. Lofty, and G. Zschornack, J. Phys. B At. Mol. Opt. Phys. 30, 237 (1997); DOI: https://doi.org/10.1088/0953-4075/30/2/017
  11. V. L. Jacobs, J. Davis, B. F. Rozsnyai, and J. W. Cooper, Phys. Rev. A 21, 1917 (1980); DOI: https://doi.org/10.1103/PhysRevA.21.1917
  12. A. G. Kochur, A. I. Dudenko, V. L. Sukhorukov, and I. D. Petrov, J. Phys. B At. Mol. Opt. Phys. 27, 1709 (1994); DOI: https://doi.org/10.1088/0953-4075/27/9/011
  13. A. G. Kochur, V. L. Sukhorukov, A. I. Dudenko, and P. V. Demekhin, J. Phys. B At. Mol. Opt. Phys. 28, 387 (1995); DOI: https://doi.org/10.1088/0953-4075/28/3/010
  14. G. Omar and Y. Hahn, Phys. Rev. A 44, 483 (1991); DOI: https://doi.org/10.1103/PhysRevA.44.483
  15. G. Omar and Y. Hahn, Z. Phys. D Atoms, Mol. Clust. 25, 31 (1992); DOI: https://doi.org/10.1007/BF01437517
  16. G. Omar and Y. Hahn, Z. Phys. D Atoms, Mol. Clust. 25, 41 (1992); DOI: https://doi.org/10.1007/BF01437518
  17. V. Jonauskas, R. Karazija, and S. Kuˇcas, J. Electron Spectros. Relat. Phenomena 107, 147 (2000); DOI:https://doi.org/10.1016/S0368-2048(00)00096-7
  18. V. Jonauskas, L. Partanen, S. Kuˇcas, R. Karazija, M. Huttula, S. Aksela, and H. Aksela, J. Phys. B At. Mol. Opt. Phys. 36, 4403 (2003); DOI: https://doi.org/10.1088/0953-4075/36/22/003
  19. A. G. Kochur, A. P. Chaynikov, A. I. Dudenko, and V. A. Yavna, J. Quant. Spectrosc. Radiat. Transf. 286, 108200 (2022); DOI: https://doi.org/10.1016/j.jqsrt.2022.108200
  20. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Eur. Phys. J. D 73, 80 (2019); DOI: https://doi.org/10.1140/epjd/e2019-90185-2
  21. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 238, 146863 (2020); DOI: https://doi.org/10.1016/j.elspec.2019.05.012
  22. A. P. Chaynikov, A. G. Kochur, and V.A.Yavna, Radiat. Eff. Defects Solids 177, 814 (2022); DOI: https://doi.org/10.1080/10420150.2022.2082296
  23. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Eur. Phys. J. D 71, 282 (2017); DOI: https://doi.org/10.1140/epjd/e2017-80194-6
  24. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, Appl. Radiat. Isot. 160, 109144 (2020); DOI: https://doi.org/10.1016/j.apradiso.2020.109144
  25. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 252, 147111 (2021); DOI: https://doi.org/10.1016/j.elspec.2021.147111
  26. A. G. Kochur, A. P. Chaynikov, and V. A. Yavna, J. Electron Spectros. Relat. Phenomena 256, 147171 (2022); DOI: https://doi.org/10.1016/j.elspec.2022.147171
  27. A. P. Chaynikov, A. G. Kochur, and V. A. Yavna, Radiat. Eff. Defects Solids 178, 820 (2023); DOI: https://doi.org/10.1080/10420150.2023.2185890
  28. V. G. Yarzhemsky and A. Sgamellotti, J. Electron Spectros. Relat. Phenomena 125, 13 (2002); DOI:https://doi.org/10.1016/S0368-2048(02)00042-7
  29. A. G. Kochur, A. I. Dudenko, I. D. Petrov, and V. F. Demekhin, J. Electron Spectros. Relat. Phenomena 156-158, 78 (2007); DOI: https://doi.org/10.1016/j.elspec.2006.11.033
  30. А. Г. Кочур, Процессы распада вакансий в глубоких электронных оболочках, Дисс. докт. физ.-мат. наук, Ростов-на-Дону (1997).
  31. R. Kau, I. D. Petrov, V. L. Sukhorukov, and H. Hotop, Z. Phys. D Atoms, Mol. Clust. 39, 267 (1997); DOI: https://doi.org/10.1007/s004600050137
  32. R. Karazija, Sums of Atomic Quantities and Mean Characteristics of Spectra, Mokslas, Vilnius (1991).
  33. S. Kuˇcas and R. Karazija, Phys. Scr. 47, 754 (1993); DOI: https://doi.org/10.1088/0031-8949/47/6/012
  34. A. P. Chaynikov, A. G. Kochur, A. I. Dudenko, and V. A. Yavna, J. Quant. Spectrosc. Radiat. Transf. 302, 108561 (2023); DOI: https://doi.org/10.1016/j.jqsrt.2023.108561
  35. А. Ф. Аккерман, Моделирование траекторий заряженных частиц в веществе, Энергоатомиздат, Москва (1991).
  36. J. H. Scofield, Theoretical Photoionization Cross Sections from 1 to 1500 keV, Lawrence Livermore National Laboratory (1973).
  37. M. B. Trzhaskovskaya and V. G. Yarzhemsky, At. Data Nucl. Data Tables 119, 99 (2018); DOI: https://doi.org/10.1016/j.adt.2017.04.003
  38. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985); DOI: https://doi.org/10.1016/0092-640X(85)90016-6
  39. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, and K. Olsen, NIST Standard Reference Database 8 (XGAM), NIST, PML, Radiation Physics Division (2010); DOI: https://dx.doi.org/10.18434/T48G6X
  40. И.И. Собельман, Введение в теорию атомных спектров, Наука, Москва (1977)
  41. I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Elsevier (1972); DOI: https://doi.org/10.1016/C2013-0-02394-8
  42. A. Jablonski, F. Salvat, C. J. Powell, NIST Electron Elastic-Scattering Cross-Section Database - Version 3.2, National Institute of Standards and Technology, Gaithersburg, MD (2010); DOI: https://dx.doi.org/10.18434/T4NK50
  43. Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954 (1994); DOI: https://doi.org/10.1103/PhysRevA.50.3954
  44. M. B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B At. Mol. Phys. 20, 3501 (1987); DOI: https://dx.doi.org/10.1088/0022-3700/20/14/022
  45. Y.-K. Kim and J.-P. Desclaux, Phys. Rev. A 66, 012708 (2002); DOI: https://doi.org/10.1103/PhysRevA.66.012708
  46. W. R. Thompson, M. B. Shah, and H. B. Gilbody, J. Phys. B At. Mol. Opt. Phys. 28, 1321 (1995); DOI: https://dx.doi.org/10.1088/0953-4075/28/7/023
  47. E. Brook, M. F. A. Harrison, and A. C. H. Smith, J. Phys. B At. Mol. Phys. 11, 3115 (1978); DOI: https://dx.doi.org/10.1088/0022-3700/11/17/021
  48. W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. 104, 2956 (1996); DOI: http://dx.doi.org/10.1063/1.471116
  49. M. A. Bolorizadeh and M. E. Rudd, Phys. Rev. A 33, 882 (1986); DOI: https://doi.org/10.1103/PhysRevA.33.882
  50. H. Shinotsuka, S. Tanuma, and C. Powell, Surf. Interface Anal. 54, 534 (2022); DOI: https://doi.org/10.1002/sia.7064
  51. N. Sinha and B. Antony, J. Phys. Chem. B 125, 5479 (2021); DOI: https://doi.org/10.1021/acs.jpcb.0c10781
  52. Z. Tan, Y. Xia, M. Zhao, and X. Liu, Radiat. Environ. Biophys. 45, 135 (2006); DOI: https://doi.org/10.1007/s00411-006-0049-0
  53. A. Akkerman and E. Akkerman, J. Appl. Phys. 86, 5809 (1999); DOI: https://doi.org/10.1063/1.371597
  54. Л. Д. Ландау, Е. М. Лифшиц, Курс теоретической физики. Том III. Квантовая механика (нерелятивистская теория), ФИЗМАТЛИТ, Москва (2004).
  55. Z. Francis, S. Incerti, M. Karamitros, H. N. Tran, and C. Villagrasa, Nucl. Instruments Methods Phys. Res. Sect. B 269, 2307 (2011); DOI: https://doi.org/10.1016/j.nimb.2011.02.031
  56. M. J. Berger, J. S. Coursey, M.A. Zucker, and J. Chang, NIST SRD 124: ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3), National Institute of Standards and Technology, Gaithersburg, MD (2005); DOI: https://dx.doi.org/10.18434/T4NC7P
  57. K. T. Butterworth, S. J. McMahon, F. J. Currell, and K. M. Prise, Nanoscale 4, 4830 (2012); DOI: https://doi.org/10.1039/C2NR31227A

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences