Methods of organic compounds isolation from solid samples. 2. Extraction under sub- and supercritical conditions. Matrix solid-phase dispersion. The QuEChERS method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The second and final part of the review. General information is provided on extraction under sub- and supercritical conditions (liquid extraction under pressure, subcritical water extraction, supercritical fluid extraction), the matrix solid-phase dispersion method and the QuEChERS method. Based on the analysis of the review papers, information on the specifics of sample preparation using these methods is systematized, experimental parameters affecting the extraction efficiency are considered, examples of the use of these methods for the isolation of organic compounds in the analysis of solid environmental objects, food and plants are given.

Full Text

Restricted Access

About the authors

S. G. Dmitrienko

Lomonosov Moscow State University

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

V. V. Apyari

Lomonosov Moscow State University

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

V. V. Tolmacheva

Lomonosov Moscow State University

Author for correspondence.
Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

M. V. Gorbunova

Lomonosov Moscow State University

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

A. A. Furletov

Lomonosov Moscow State University

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

G. I. Tsizin

Lomonosov Moscow State University

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3

Yu. A. Zolotov

Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: nikatolm@mail.ru

Faculty of Chemistry

Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3; 31 Leninsky Prospekt, Moscow, 119991

References

  1. Majors R.E. Modern Techniques for the Extraction of Solid Materials — An Update // LCGC Europe. 2007. V. 20. P. 71.
  2. Ridgway K., Lalljie S.P.D., Smith R.M. Sample preparation techniques for the determination of trace residues and contaminants in foods // J. Chromatogr. A. 2007. V. 1153. P. 36. https://doi.org/10.1016/j.chroma.2007.01.134
  3. Brinco Silva J., Mateus E.P., Ribeiro A.B., Guedes P., da Gomes M. Analysis of pesticide residues in soil: A review and comparison of methodologies // Microchem. J. 2023. V. 195. Article 109465. https://doi.org/10.1016/j.microc.2023.109465
  4. Qin H., Liu H., Liu Y., Di S., Bao Y., Zhai Y., Zhu S. Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment // Trends Anal. Chem. 2023. V. 164. Article 117112. https://doi.org/10.1016/j.trac.2023.117112
  5. Picot-Allain C., Mahomoodally M. F., Ak G., Zengin G. Conventional versus green extraction techniques – A comparative perspective // Curr. Opin. Food Sci. 2021. V. 40. P. 144. https://doi.org/10.1016/j.cofs.2021.02.009
  6. Armenta S., Garrigues S., Esteve-Turrillas F.A., de la Guardia M. Green extraction techniques in green analytical chemistry // Trends Anal. Chem. 2019. V. 116. P. 248. https://doi.org/10.1016/j.trac.2019.03.016
  7. Aly A.A., Górecki T. Green approaches to sample preparation based on extraction techniques // Molecules. 2020. V. 25. P. 1719. https://doi.org/10.3390/molecules25071719
  8. Syrgabek Y., Alimzhanova M., García-Encina P.A., Jiménez J.J., López-Serna R. Greenness evaluation of sample preparation methods by GAPI for the determination of pesticides in grape: A review // Trends Environ. Anal. Chem. 2023. V. 39. Article e00206. https://doi.org/10.1016/j.teac.2023.e00206
  9. Usman M., Nakagawa M., Cheng S. Emerging trends in green extraction techniques for bioactive natural products // Processes. 2023. V. 11. P. 3444. https://doi.org/10.3390/pr11123444
  10. Moreda-Piñeiro J., Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis // Trends Anal. Chem. 2019. V. 118. P. 1. https://doi.org/10.1016/j.trac.2019.05.026
  11. Moreda-Piñeiro J., & Moreda-Piñeiro A. Recent advances in coupled green assisted extraction techniques for foodstuff analysis // Trends Anal. Chem. 2023. V. 169. Article 117411 https://doi.org/10.1016/j.trac.2023.117411
  12. Maciel-Silva F.W., Lachos-Perez D., Buller L.S., Sganzerla W.G., Pérez M., Rostagno M.A., Forster-Carneiro T. Green extraction processes for complex samples from vegetable matrices coupled with on-line detection system: A critical review // Molecules. 2022. V. 27. P. 6272. https://doi.org/10.3390/molecules27196272
  13. Cetinkaya A., Kaya S.I., Ozkan S.A. An overview of the current progress in green analytical chemistry by evaluating recent studies using greenness assessment tools // Trends Anal. Chem. V. 168. Article 117330. https://doi.org/10.1016/j.trac.2023.117330
  14. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. Методы выделения органических соединений из твердых образцов. 1. Жидкостная экстракция. Обзор обзоров // Журн. аналит. химии. 2024. № 8. С. 811.
  15. Mendiola J.A., Herrero M., Cifuentes A., Ibanez E. Use of compressed fluids for sample preparation: Food applications // J. Chromatogr. A. 2007. V. 1152. P. 234. https://doi.org/ 10.1016/j.chroma.2007.02.046
  16. Herrero M., Castro-Puyana M., Mendiola J.A., Ibañez, E. Compressed fluids for the extraction of bioactive compounds // Trends Anal. Chem. 2013. V. 43. P. 67. https://doi.org/ 10.1016/j.trac.2012.12.008
  17. Amador-Luna V.M., Montero L., Herrero M. Compressed fluids for the extraction of bioactive compounds from plants, food by-products, seaweeds and microalgae – An update from 2019 to 2023 // Trends Anal. Chem. 2023. V. 169. Article 117410.
  18. Gallego R., Bueno M., Herrero M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update // Trends Anal. Chem. 2019. V. 116. P. 198. https://doi.org/10.1016/j.trac.2019.04.030
  19. Yousefi M., Rahimi-Nasrabadi M., Pourmortazavi S.M., Wysokowski M., Jesionowski T., Ehrlich H., Mirsadeghi S. Supercritical fluid extraction of essential oils // Trends Anal. Chem. 2019. V. 118. P. 182. https://doi.org/10.1016/j.trac.2019.05.038
  20. Uwineza P.A., Waskiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials // Molecules. 2020. V. 25. Article 3847.
  21. Dias A.L. B., de Aguiar A.C., Rostagno M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends // Ultrason. Sonochem. 2021. V. 74. Article 105584. https://doi.org/10.1016/j.ultsonch.2021.105584
  22. Arumugham T., Rambabu K., Hasan S.W., Show P.L., Rinklebe J., Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications – A review // Chemosphere. 2021. V. 271. Article 29525. https://doi.org/10.1016/j.chemosphere.2020
  23. Qamar S., Torres Y.J. M., Parekh H.S., Falconer J. R. Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review // J. Chromatogr. B. 2021. V. 1167. Article 122581. https://doi.org/10.1016/j.jchromb.2021.12258
  24. López-Hortas L., Rodríguez P., Díaz-Reinoso B., Gaspar M.C., de Sousa H.C., Braga M.E. M., Domínguez H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers // J. Supercrit. Fluids. 2022. V. 188. Article 105652 https://doi.org/10.1016/j.supflu.2022.105652
  25. Fraguela-Meissimilly H., Bastías-Monte J.M., Vergara C., Ortiz-Viedma J., Lemus-Mondaca R., Flores M., Toledo-Merma P., Alcázar-Alay S., Gallón-Bedoya M. New trends in supercritical fluid technology and pressurized liquids for the extraction and recovery of bioactive compounds from agro-industrial and marine food wast // Molecules. 2023. V. 28. Article 4421. https://doi.org/10.3390/molecules28114421
  26. Bjorklund E., Nilsson T., Bowadt S. Pressurised liquid extraction of persistent organic pollutants in environmental analysis // Trends Anal. Chem. 2000. V. 9. P. 434. https://doi.org/10.1016/S0165-9936(00)00002-9
  27. Giergielewicz-Możajska H., Dąbrowski Ł., Namieśnik J. Accelerated solvent extraction (ASE) in the analysis of environmental solid samples — Some aspects of theory and practice // Crit. Rev. Anal. Chem. 2001. V. 31. P. 149. https://doi.org/10.1080/20014091076712
  28. Ramos L., Kristenson E.M., Brinkman U.A.T. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis // J. Chromatogr. A. 2002. V. 975. P. 3. https://doi.org/10.1016/s0021-9673(02)01336-5
  29. Luque-Garcia J.L, Luque de Castro M.D. Coupling of pressurized liquid extraction to other steps in environmental analysis // Trends Anal. Chem. 2004. V. 23. P. 102.
  30. Carabias-Martínez R., Rodríguez-Gonzalo E., Revilla-Ruiz P., Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples // J. Chromatogr. A. 2005. V. 1089. P. 1. https://doi.org/10.1016/j.chroma.2005.06.072
  31. Schantz M.M. Pressurized liquid extraction in environmental analysis // Anal. Bioanal. Chem. 2006. V. 386. P. 1043. https://doi.org/10.1007/s00216-006-0648-2
  32. Bjorklund E., Sporring S., Wiberg K., Haglund P., von Holst C. New strategies for extraction and clean-up of persistent organic pollutants from food and feed samples using selective pressurized liquid extraction // Trends Anal. Chem. 2006. V. 25. P. 318.
  33. Nieto A., Borrull F., Pocurull E., Marcé R. M. Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge // Trends Anal. Chem. 2010. V. 29. P. 752. https://doi.org/10.1016/j.trac.2010.03.014
  34. Runnqvist H., Bak S.A., Hansen M., Styrishave B., Halling-Sørensen B., Björklund E. Determination of pharmaceuticals in environmental and biological matrices using pressurised liquid extraction — Are we developing sound extraction methods? // J. Chromatogr. A. 2010. V. 1217. P. 2447. https://doi.org/10.1016/j.chroma.2010.02.046
  35. Mustafa A., Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review // Anal. Chim. Acta. 2011. V. 703. P. 8. https://doi.org/10.1016/j.aca.2011.07.018
  36. Sun H., Ge X., Lv Y., Wang A. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed // J. Chromatogr. A. 2012. V. 1237. P. 1. https://doi.org/10.1016/j.chroma.2012.03.003
  37. Carro A.M., González P., Lorenzo R.A. Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction // J. Chromatogr. A. 2013. V. 1296. P. 214. https://doi.org/10.1016/j.chroma.2013.04.068
  38. Subedi B., Aguilar L., Robinson E.M., Hageman K.J., Björklund E., Sheesley R.J., Usenko S. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern // Trends Anal. Chem. 2015. V. 68. P. 119. https://doi.org/10.1016/j.trac.2015.02.011
  39. Vazquez-Roig P., Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples // Trends Anal. Chem. 2015. V. 71. P. 55. https://doi.org/10.1016/j.trac.2015.04.014
  40. Hoff R.B., Pizzolato T.M. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications // Trends Anal. Chem. 2018. V. 109. P. 83. https://doi.org/ 10.1016/j.trac.2018.10.002
  41. Andreu V., Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples // Trends Anal. Chem. 2019. V. 118. P. 709. https://doi.org/10.1016/j.trac.2019.06.038
  42. Cao Y., Liu W., Gong X., Yu J., Tu P., Li J., Song Y. Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review // J. Pharm. Biomed. Anal. 2021. V. 205. Article 114332. https://doi.org/10.1016/j.jpba.2021.114332
  43. Fontanals N., Pocurull E., Borrull F., Marcé R.M. Clean-up techniques in the pressurized liquid extraction of abiotic environmental solid samples // Trends Environ. Anal. Chem. 2021. V. 29. Article e00111. https://doi.org/10.1016/j.teac.2020.e00111
  44. Barp L., Višnjevec A.M., Moret S. Pressurized liquid extraction: A powerful tool to implement extraction and purification of food contaminants // Foods. 2023. V. 12. P. 2017. https://doi.org/10.3390/foods12102017
  45. Smith R.M. Extractions with superheated water // J. Chromatogr. A. 2002. V. 975. P. 31. https://doi.org/10.1016/S0021-9673(02)01225-6
  46. Weingärtner H., Franck E.U. Supercritical water as a solvent // Angew. Chem. Int. Ed. 2005. V. 44. P. 2672. https://doi.org/10.1002/anie.200462468
  47. Smith R.M. Superheated water: the ultimate green solvent for separation science // Anal. Bioanal. Chem. // 2006. V. 385. P. 419. https://doi.org/10.1007/s00216-006-0437-y
  48. Ong E.S., Cheong J S.H., Goh D. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials // J. Chromatogr. A. 2006. V. 1112. P. 92. https://doi.org/10.1016/j.chroma.2005.12.052
  49. Kronholm J., Hartonen K., Riekkola M.-L. Analytical extractions with water at elevated temperatures and pressures // Trends Anal. Chem. 2007. V. 26. P. 396. https://doi.org/10.1016/j.trac.2007.03.004
  50. Teo C.C., Tan S.N., Yong J.W. H., Hew C.S., Ong E.S. Pressurized hot water extraction (PHWE) // J. Chromatogr. A. 2010. V. 1217. P. 2484. https://doi.org/10.1016/j.chroma.2009.12.050
  51. Plaza M., Turner C. Pressurized hot water extraction of bioactives // Trends Anal. Chem. 2015. V. 71. P. 39. https://doi.org/10.1016/j.trac.2015.02.022
  52. Gbashi S., Adebo O.A., Piater L., Madala. N. E., Njobeh P.B. Subcritical water extraction of biological materials // Sep. Purif. Technol. 2016. V. 46. P. 21. https://doi.org/10.1080/15422119.2016.1170035
  53. Castro-Puyana M., Marina M.L., Plaza M. Water as green extraction solvent: Principles and reasons for its use // Curr. Opin. Green Sustain. Chem. 2017. V. 5. P. 31. https://doi.org/10.1016/j.cogsc.2017.03.00
  54. Борисова Д.Р., Статкус М.А., Цизин Г.И., Золотов Ю.А. Вода в субкритическом состоянии: применение в химическом анализе // Журн. аналит. химии. 2017. Т. 72. С. 699. (Borisova D.R., Statkus M.A., Tsizin G.I., Zolotov Y.A. Subcritical water: Use in chemical analysis // J. Anal. Chem. 2017. Т. 72. № 8. С. 823. https://doi.org/10.1134/S1061934817080044)
  55. Zhang J., Wen C., Zhang H., Duan Y., Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review // Trends Food Sci. Technol. 2019. V. 95. P. 183. https://doi.org/10.1016/j.tifs.2019.11.018
  56. Essien S.O., Young B., Baroutian S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials // Trends Food Sci. Technol. 2020. V. 97. P. 156. https://doi.org/10.1016/j.tifs.2020.01.014
  57. Cheng Y., Xue F., Yu S., Du S., Yang Y. Subcritical water extraction of natural products // Molecules 2021. V. 26. P. 1. https://doi.org/10.3390/molecules26134004
  58. Hawthorne S.B. Analytical-scale supercritical fluid extraction // Anal. Chem. 1990. V. 62. P. 633A. https://doi.org/10.1021/ac00210a722
  59. Janda V. Supercritical fluid extraction in environmental analysis // J. Chromatogr. A. 1993. V. 642. P. 283.
  60. Camel V., Tambuté A., Caude M. Analytical-scale supercritical fluid extraction: A promising technique for the determination of pollutants in environmental matrices // J. Chromatogr. A. 1993. V. 642. P. 263.
  61. Bøwadt S., Hawthorne S.B. Supercritical fluid extraction in environmental analysis // J. Chromatogr. A. 1995. V. 703. P. 549. https://doi.org/10.1016/0021-9673(95)00051-n
  62. Lehotay S. J. Supercritical fluid extraction of pesticides in foods // J. Chromatogr. A. 1997. V. 785. P. 289. https://doi.org/10.1016/s0021-9673(97)00461-5
  63. Motohashi N., Nagashima H., Párkányi C. Supercritical fluid extraction for the analysis of pesticide residues in miscellaneous samples // J. Biochem. Biophys. Methods. 2000. V. 43. P. 313. https://doi.org/10.1016/s0165-022x(00)00052-x
  64. Radcliffe C., Maguire K., Lockwood B. Applications of supercritical fluid extraction and chromatography in forensic science // J. Biochem. Biophys. Methods. 2000. V. 43. P. 261. https://doi.org/10.1016/s0165-022x(00)00058-0
  65. Lang Q., Wai C.M. Supercritical fluid extraction in herbal and natural product studies – A practical review // Talanta. 2001. V. 53. P. 771. https://doi.org/10.1016/S0039-9140(00)00557-9
  66. Turner C., Eskilsson C.S., Björklund E. Collection in analytical-scale supercritical fluid extraction // J. Chromatogr. A. 2002. V. 947. P. 1. https://doi.org/10.1016/s0021-9673(01)01592-8
  67. Zougagh M., Valcárcel M., Rı́os A. Supercritical fluid extraction: A critical review of its analytical usefulness // Trends Anal. Chem. 2004. V. 23. P. 399. https://doi.org/10.1016/s0165-9936(04)00524-2
  68. Anitescu G., Tavlarides L.L. Supercritical extraction of contaminants from soils and sediments // J. Supercrit. Fluids. 2006. V. 38. P. 167. https://doi.org/10.1016/j.supflu.2006.03.024
  69. Abbas K.A., Mohamed A., Abdulamir A.S., Abas H.A. A review on supercritical fluid extraction as new analytical method // Am. J. Biochem. Biotechnol. 2008. V. 4. P. 345. https://doi.org/10.3844/ajbbsp.2008.345.353
  70. Sunarso J., Ismadji S. Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review // J. Hazard. Mater. 2009. V. 161. P. 1. https://doi.org/10.1016/j.jhazmat.2008.03.069
  71. Sapkale G., Patil S., Surwase U., Bhatbhage P. Supercritical fluid extraction // Int. J. Chem. Sci. 2010. V. 8. P. 729.
  72. Herrero M., Mendiola J.A., Cifuentes A., Ibáñez E. Supercritical fluid extraction: Recent advances and applications // J. Chromatogr. A. 2010. V. 1217. P. 2495. https://doi.org/10.1016/j.chroma.2009.12.019
  73. Machida H., Takesue M., Smith R.L. Green chemical processes with supercritical fluids: Properties, materials, separations and energy // J. Supercrit. Fluids. 2011. V. 60. P. 2. https://doi.org/10.1016/j.supflu.2011.04.016
  74. Xu L., Zhan X., Zeng Z., Chen R., Li H., Xie T., Wang S. Recent advances on supercritical fluid extraction of essential oils // Afr. J. Pharm. Pharmacol. 2011. V. 5. P. 1196. https://doi.org/ 10.5897/AJPP11.228
  75. Huang Z., Shi X., Jiang W. Theoretical models for supercritical fluid extraction // J. Chromatogr. A. 2012. V. 1250. P. 2. https://doi.org/10.1016/j.chroma.2012.04.032
  76. Покровский О. Пробоподготовка в химическом анализе методом сверхкритической флюидной экстракции // Аналитика. 2013. Т. 6. С. 23.
  77. Pourmortazavi S.M., Rahimi-Nasrabadi, M. Hajimirsadeghic S.S. Supercritical fluid technology in analytical chemistry // Curr. Anal. Chem. 2014. V. 10. P. 3.
  78. Zoccali M., Donato P., Mondello L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques // Trends Anal. Chem. 2019. V. 116. P. 158. https://doi.org/10.1016/j.trac.2019.04.028
  79. Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion // J. Chromatogr. A. 1989. V. 475. P. 353.
  80. Walker C.C., Lott H.M., Barker S.A. Matrix solid-phase dispersion extraction and the analysis of drugs and environmental pollutants in aquatic species // J. Chromatogr. A. 1993. V. 642. P. 225.
  81. Barker S.A. Applications of matrix solid-phase dispersion in food analysis //. J. Chromatogr. A. 2000. V. 880. P. 63. https://doi.org/10.1016/s0021-9673(99)01290-x
  82. Barker S.A. Matrix solid-phase dispersion //. J. Chromatogr. A. 2000. V. 885. P. 115.
  83. Karasová G., Brandšteterová E., Lachová M. Matrix solid phase dispersion as an effective preparation method for food samples and plants before HPLC analysis // Czech J. Food Sci. 2003. V. 21. P. 219.
  84. Kristenson E.M., Brinkman U.A.Th., Ramos L. Recent advances in matrix solid-phase dispersion // Trends Anal. Chem. 2006. V. 25. P. 96. https://doi.org/10.1016/j.trac.2005.05.011
  85. Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Bioph. Methods. 2007. V. 70. P. 151. https://doi.org/10.1016/j.jbbm.2006.06.005
  86. Bogialli S., Di Corcia A. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs // J. Biochem. Biophys. Methods. 2007. V. 70. P. 163. https://doi.org/10.1016/j.jbbm.2006.07.007
  87. García-López M., Canosa P. Rodríguez I. Trends and recent applications of matrix solid-phase dispersion // Anal. Bioanal. Chem. 2008. V. 391. P. 963. https://doi.org/10.1007/s00216-008-1898-y
  88. Moreda-Pineiro J., Alonso-Rodriguez E., Lopez-Mahia P., Muniategui-Lorenzo S., Prada-Rodriguez D., Romaris-Hortas V., Míguez-Framil M., Moreda-Piñeiro A., Bermejo-Barrera P. Matrix solid-phase dispersion of organic compounds and its feasibility for extracting inorganic and organometallic compounds // Trends Anal. Chem. 2009. V. 28. P. 110. https://doi.org/10.1016/j.trac.2008.09.016
  89. Capriotti A.L., Cavaliere C., Giansanti P., Gubbiotti R., Samperi R., Laganà A. Recent developments in matrix solid-phase dispersion extraction // J. Chromatogr. A. 2010. V. 1217. P. 2521. https://doi.org/10.1016/j.chroma.2010.01.030.
  90. Capriotti A.L, Cavaliere C, Laganà A, Piovesana S, Samperi R. Recent trends in matrix solid-phase dispersion // Trends Anal. Chem. 2013. V. 43. P. 53.
  91. Capriotti A.L., Cavaliere C., Foglia P., Samperi R., Stampachiacchiere S., Ventura S., Laganà A. Recent advances and developments in matrix solid-phase dispersion // Trends Anal. Chem. 2015. V. 71. P. 186. https://doi.org/10.1016/j.trac.2015.03.012
  92. Tu X., Chen W. A review on the recent progress in matrix solid phase dispersion // Molecules. 2018. V. 23. Article 2767. https://doi.org/10.3390/molecules23112767
  93. Ramos L. Use of new tailored and engineered materials for matrix solid-phase dispersion // Trends Anal. Chem. 2019. V. 118. P. 751. https://doi.org/10.1016/j.trac.2019.07.006
  94. Wianowska D., Gil M. New insights into the application of MSPD in various fields of analytical chemistry // Trends Anal. Chem. 2019. V. 112. P. 29. https://doi.org/10.1016/j.trac.2018.12.028
  95. El-Deen A.K. An overview of recent advances and applications of matrix solid-phase dispersion // Sep. Purif. Reviews. 2023. V. 53. P. 1. https://doi.org/10.1080/15422119.2023.2172734
  96. Anastassiades M., Lehotay S., Stajnbaher D., Schenck F. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce // J. AOAC Int. 2003. V. 86. P. 412.
  97. Lehotay S.J., Anastassiades M., Majors R.E. The QuEChERS revolution // LCGC Europe. 2010. V. 23. P. 418.
  98. Wilkowska A., Biziuk M. Determination of pesticide residues in food matrices using the QuEChERS methodology // Food Chem. 2011. V. 125. P. 803. https://doi.org/10.1016/j.foodchem.2010.09.094
  99. Bruzzoniti M.C., Checchini L., De Carlo R.M., Orlandini S., Rivoira L., Del Bubba M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review // Anal. Bioanal. Chem. 2014. V. 406. P. 4089. https://doi.org/10.1007/s00216-014-7798-4
  100. González Curbelo M.Á., Socas-Rodríguez B., Herrera-Herrera A., González-Sálamo J., Hernández-Borges J., Rodríguez-Delgado M.Á. Evolution and applications of the QuEChERS method // Trends Anal. Chem. 2015. V. 71. P. 169.
  101. Rejczak T., Tuzimski T. A review of recent developments and trends in the QuEChERS sample preparation approach // Open Chemistry. 2015. V. 13. P. 980. https://doi.org/10.1515/chem-2015-0109
  102. Schmidt M.L., Snow N.H. Making the case for QuEChERS-gas chromatography of drugs // Trends Anal. Chem. 2016. V. 75. P. 49. https://doi.org/10.1016/j.trac.2015.07.012
  103. Pszczolinska K., Michel M. The QuEChERS approach for the determination of pesticide residues in soil samples: An overview // J. AOAC Int. 2016. V. 99. P. 1403. https://doi.org/10.5740/jaoacint.16-0274
  104. Rahman M.M., Abd El-Aty A.M., Kim S.-W., Shin S.C., Shin H.-C., Shim J.-H. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. // J. Sep. Sci. 2016. V. 40. P. 203. https://doi.org/10.1002/jssc.201600889
  105. Lawal A., Wong R.C. S., Tan G.H., Abdulra’uf L.B., Alsharif A. M.A. Recent modifications and validation of QuEChERS-dSPE coupled to LC–MS and GC–MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review. // J. Chromatogr. Sci. 2018. V. 56. P. 656. https://doi.org/10.1093/chromsci/bmy032
  106. Zhang C., Deng Y., Zheng J., Zhang Y., Yang L., Liao C., Su L., Zhou Y., Gong D., Chen L., Luo A. The application of the QuEChERS methodology in the determination of antibiotics in food: A review // Trends Anal. Chem. 2019. V. 118. P. 517. https://doi.org/10.1016/j.trac.2019.06.01
  107. Santana-Mayor Á., Socas-Rodríguez B., Herrera-Herrera A.V., Rodríguez-Delgado M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis // Trends Anal. Chem. 2019. V. 116. P. 214. https://doi.org/10.1016/j.trac.2019.04.018
  108. Musarurwa H., Chimuka L., Pakade V.E., Tavengwa N.T. Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis // J. Food Compos. Anal. 2019. Article 103314. https://doi.org/10.1016/j.jfca.2019.103314
  109. Alcântara D.B., Fernandes T.S. M., Nascimento H.O., Lopes A.F., Menezes M.G. G., Lima A.C. A., Carvalho T.V., Grinberg P., Milhome M.A. L., Oliveira A.H. B., Becker H., Zocolo G.J., Nascimento R.F. Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade // Food Chem. 2019. V. 298. Article 124958. https://doi.org/10.1016/j.foodchem.2019.124958
  110. Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A. M., Silva C., Medina S., Câmara J.S. QuEChERS – Fundamentals, relevant improvements, applications and future trend // Anal. Chim. Acta. 2019. V. 1070. P. 1. https://doi.org/10.1016/j.aca.2019.02.036
  111. Kim L., Lee D., Cho H.-K., Choi S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals // Trends Environ. Anal. Chem. 2019. V. 22. Article e00063. https://doi.org/10.1016/j.teac.2019.e00063
  112. González-Curbelo M.Á., Varela-Martínez D.A., Riaño-Herrera D.A. Pesticide-residue analysis in soils by the QuEChERS method: A review // Molecules. 2022. V. 27. Article 4323. https://doi.org/10.3390/molecules27134323
  113. Lehotay S.S. The QuEChERSER mega-method // LCGC North America. 2022. V. 40. P. 13.
  114. Zhou Q., Yu C., Meng L., Ji W., Liu S., Pan C., Lan T., Wang L., Qu B. Research progress of applications for nano-materials in improved QuEChERS method // Crit. Rev. Food Sci. Nutr. 2023. P. 1. https://doi.org/10.1080/10408398.2023.2225613
  115. Santana-Mayor A., Rodríguez-Ramos R., Herrera-Herrera A.V., Socas-Rodríguez B., Rodríguez-Delgado M.A. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020–2023) // Trends Anal. Chem. 2023. V. 169. Article 117375.
  116. Sadighara P., Basaran B., Afshar A., Nazmara S. Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review // Microchem. J. 2024. V. 197. Article 109711.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of liquid extraction under pressure [41].

Download (196KB)
3. Fig. 2. Variants of matrix solid-phase dispersion (MSPD) [92].

Download (227KB)
4. Fig. 3. Main stages of the original QuEChERS method [106].

Download (332KB)
5. Fig. 4. Variants of QuEChERS protocol improvement. Abbreviations: d-SPE – dispersive solid-phase extraction, GC – gas chromatography, HPLC – high-performance liquid chromatography, DMD – diode array detector, FL – fluorescence detector, MS – mass spectrometric detector, PSA – primary-secondary amine, SCDS – sodium citrate dibasic sesquihydrate, SCTD – sodium citrate tribasic dihydrate, Z-Sep – zirconium dioxide-based sorbents, cmin – detection limit [110].

Download (466KB)
6. Fig. 5. The number of reviews on methods for the extraction of organic compounds from solid samples published for all time and for the last five years. Abbreviations: USE – ultrasonic extraction, MVE – microwave extraction, PLE – pressurized liquid extraction, SSEE – subcritical water extraction, SFE – supercritical fluid extraction, MTFD – matrix solid-phase dispersion.

Download (82KB)

Copyright (c) 2024 Russian Academy of Sciences