Methods of organic compounds isolation from solid samples. 2. Extraction under sub- and supercritical conditions. Matrix solid-phase dispersion. The QuEChERS method
- Authors: Dmitrienko S.G.1, Apyari V.V.1, Tolmacheva V.V.1, Gorbunova M.V.1, Furletov A.A.1, Tsizin G.I.1, Zolotov Y.A.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 79, No 9 (2024)
- Pages: 935-959
- Section: REVIEWS
- Submitted: 23.03.2025
- URL: https://archivog.com/0044-4502/article/view/677569
- DOI: https://doi.org/10.31857/S0044450224090014
- EDN: https://elibrary.ru/tjcajn
- ID: 677569
Cite item
Abstract
The second and final part of the review. General information is provided on extraction under sub- and supercritical conditions (liquid extraction under pressure, subcritical water extraction, supercritical fluid extraction), the matrix solid-phase dispersion method and the QuEChERS method. Based on the analysis of the review papers, information on the specifics of sample preparation using these methods is systematized, experimental parameters affecting the extraction efficiency are considered, examples of the use of these methods for the isolation of organic compounds in the analysis of solid environmental objects, food and plants are given.
Full Text

About the authors
S. G. Dmitrienko
Lomonosov Moscow State University
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3V. V. Apyari
Lomonosov Moscow State University
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3V. V. Tolmacheva
Lomonosov Moscow State University
Author for correspondence.
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3M. V. Gorbunova
Lomonosov Moscow State University
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3A. A. Furletov
Lomonosov Moscow State University
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3G. I. Tsizin
Lomonosov Moscow State University
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3Yu. A. Zolotov
Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: nikatolm@mail.ru
Faculty of Chemistry
Russian Federation, 119991, Moscow, GSP-1, Leninskie gory, 1, p. 3; 31 Leninsky Prospekt, Moscow, 119991References
- Majors R.E. Modern Techniques for the Extraction of Solid Materials — An Update // LCGC Europe. 2007. V. 20. P. 71.
- Ridgway K., Lalljie S.P.D., Smith R.M. Sample preparation techniques for the determination of trace residues and contaminants in foods // J. Chromatogr. A. 2007. V. 1153. P. 36. https://doi.org/10.1016/j.chroma.2007.01.134
- Brinco Silva J., Mateus E.P., Ribeiro A.B., Guedes P., da Gomes M. Analysis of pesticide residues in soil: A review and comparison of methodologies // Microchem. J. 2023. V. 195. Article 109465. https://doi.org/10.1016/j.microc.2023.109465
- Qin H., Liu H., Liu Y., Di S., Bao Y., Zhai Y., Zhu S. Recent advances in sample preparation and chromatographic analysis of pharmaceuticals and personal care products in environment // Trends Anal. Chem. 2023. V. 164. Article 117112. https://doi.org/10.1016/j.trac.2023.117112
- Picot-Allain C., Mahomoodally M. F., Ak G., Zengin G. Conventional versus green extraction techniques – A comparative perspective // Curr. Opin. Food Sci. 2021. V. 40. P. 144. https://doi.org/10.1016/j.cofs.2021.02.009
- Armenta S., Garrigues S., Esteve-Turrillas F.A., de la Guardia M. Green extraction techniques in green analytical chemistry // Trends Anal. Chem. 2019. V. 116. P. 248. https://doi.org/10.1016/j.trac.2019.03.016
- Aly A.A., Górecki T. Green approaches to sample preparation based on extraction techniques // Molecules. 2020. V. 25. P. 1719. https://doi.org/10.3390/molecules25071719
- Syrgabek Y., Alimzhanova M., García-Encina P.A., Jiménez J.J., López-Serna R. Greenness evaluation of sample preparation methods by GAPI for the determination of pesticides in grape: A review // Trends Environ. Anal. Chem. 2023. V. 39. Article e00206. https://doi.org/10.1016/j.teac.2023.e00206
- Usman M., Nakagawa M., Cheng S. Emerging trends in green extraction techniques for bioactive natural products // Processes. 2023. V. 11. P. 3444. https://doi.org/10.3390/pr11123444
- Moreda-Piñeiro J., Moreda-Piñeiro A. Combined assisted extraction techniques as green sample pre-treatments in food analysis // Trends Anal. Chem. 2019. V. 118. P. 1. https://doi.org/10.1016/j.trac.2019.05.026
- Moreda-Piñeiro J., & Moreda-Piñeiro A. Recent advances in coupled green assisted extraction techniques for foodstuff analysis // Trends Anal. Chem. 2023. V. 169. Article 117411 https://doi.org/10.1016/j.trac.2023.117411
- Maciel-Silva F.W., Lachos-Perez D., Buller L.S., Sganzerla W.G., Pérez M., Rostagno M.A., Forster-Carneiro T. Green extraction processes for complex samples from vegetable matrices coupled with on-line detection system: A critical review // Molecules. 2022. V. 27. P. 6272. https://doi.org/10.3390/molecules27196272
- Cetinkaya A., Kaya S.I., Ozkan S.A. An overview of the current progress in green analytical chemistry by evaluating recent studies using greenness assessment tools // Trends Anal. Chem. V. 168. Article 117330. https://doi.org/10.1016/j.trac.2023.117330
- Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В., Фурлетов А.А., Золотов Ю.А. Методы выделения органических соединений из твердых образцов. 1. Жидкостная экстракция. Обзор обзоров // Журн. аналит. химии. 2024. № 8. С. 811.
- Mendiola J.A., Herrero M., Cifuentes A., Ibanez E. Use of compressed fluids for sample preparation: Food applications // J. Chromatogr. A. 2007. V. 1152. P. 234. https://doi.org/ 10.1016/j.chroma.2007.02.046
- Herrero M., Castro-Puyana M., Mendiola J.A., Ibañez, E. Compressed fluids for the extraction of bioactive compounds // Trends Anal. Chem. 2013. V. 43. P. 67. https://doi.org/ 10.1016/j.trac.2012.12.008
- Amador-Luna V.M., Montero L., Herrero M. Compressed fluids for the extraction of bioactive compounds from plants, food by-products, seaweeds and microalgae – An update from 2019 to 2023 // Trends Anal. Chem. 2023. V. 169. Article 117410.
- Gallego R., Bueno M., Herrero M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae – An update // Trends Anal. Chem. 2019. V. 116. P. 198. https://doi.org/10.1016/j.trac.2019.04.030
- Yousefi M., Rahimi-Nasrabadi M., Pourmortazavi S.M., Wysokowski M., Jesionowski T., Ehrlich H., Mirsadeghi S. Supercritical fluid extraction of essential oils // Trends Anal. Chem. 2019. V. 118. P. 182. https://doi.org/10.1016/j.trac.2019.05.038
- Uwineza P.A., Waskiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials // Molecules. 2020. V. 25. Article 3847.
- Dias A.L. B., de Aguiar A.C., Rostagno M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends // Ultrason. Sonochem. 2021. V. 74. Article 105584. https://doi.org/10.1016/j.ultsonch.2021.105584
- Arumugham T., Rambabu K., Hasan S.W., Show P.L., Rinklebe J., Banat F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications – A review // Chemosphere. 2021. V. 271. Article 29525. https://doi.org/10.1016/j.chemosphere.2020
- Qamar S., Torres Y.J. M., Parekh H.S., Falconer J. R. Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review // J. Chromatogr. B. 2021. V. 1167. Article 122581. https://doi.org/10.1016/j.jchromb.2021.12258
- López-Hortas L., Rodríguez P., Díaz-Reinoso B., Gaspar M.C., de Sousa H.C., Braga M.E. M., Domínguez H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers // J. Supercrit. Fluids. 2022. V. 188. Article 105652 https://doi.org/10.1016/j.supflu.2022.105652
- Fraguela-Meissimilly H., Bastías-Monte J.M., Vergara C., Ortiz-Viedma J., Lemus-Mondaca R., Flores M., Toledo-Merma P., Alcázar-Alay S., Gallón-Bedoya M. New trends in supercritical fluid technology and pressurized liquids for the extraction and recovery of bioactive compounds from agro-industrial and marine food wast // Molecules. 2023. V. 28. Article 4421. https://doi.org/10.3390/molecules28114421
- Bjorklund E., Nilsson T., Bowadt S. Pressurised liquid extraction of persistent organic pollutants in environmental analysis // Trends Anal. Chem. 2000. V. 9. P. 434. https://doi.org/10.1016/S0165-9936(00)00002-9
- Giergielewicz-Możajska H., Dąbrowski Ł., Namieśnik J. Accelerated solvent extraction (ASE) in the analysis of environmental solid samples — Some aspects of theory and practice // Crit. Rev. Anal. Chem. 2001. V. 31. P. 149. https://doi.org/10.1080/20014091076712
- Ramos L., Kristenson E.M., Brinkman U.A.T. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis // J. Chromatogr. A. 2002. V. 975. P. 3. https://doi.org/10.1016/s0021-9673(02)01336-5
- Luque-Garcia J.L, Luque de Castro M.D. Coupling of pressurized liquid extraction to other steps in environmental analysis // Trends Anal. Chem. 2004. V. 23. P. 102.
- Carabias-Martínez R., Rodríguez-Gonzalo E., Revilla-Ruiz P., Hernández-Méndez J. Pressurized liquid extraction in the analysis of food and biological samples // J. Chromatogr. A. 2005. V. 1089. P. 1. https://doi.org/10.1016/j.chroma.2005.06.072
- Schantz M.M. Pressurized liquid extraction in environmental analysis // Anal. Bioanal. Chem. 2006. V. 386. P. 1043. https://doi.org/10.1007/s00216-006-0648-2
- Bjorklund E., Sporring S., Wiberg K., Haglund P., von Holst C. New strategies for extraction and clean-up of persistent organic pollutants from food and feed samples using selective pressurized liquid extraction // Trends Anal. Chem. 2006. V. 25. P. 318.
- Nieto A., Borrull F., Pocurull E., Marcé R. M. Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge // Trends Anal. Chem. 2010. V. 29. P. 752. https://doi.org/10.1016/j.trac.2010.03.014
- Runnqvist H., Bak S.A., Hansen M., Styrishave B., Halling-Sørensen B., Björklund E. Determination of pharmaceuticals in environmental and biological matrices using pressurised liquid extraction — Are we developing sound extraction methods? // J. Chromatogr. A. 2010. V. 1217. P. 2447. https://doi.org/10.1016/j.chroma.2010.02.046
- Mustafa A., Turner C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review // Anal. Chim. Acta. 2011. V. 703. P. 8. https://doi.org/10.1016/j.aca.2011.07.018
- Sun H., Ge X., Lv Y., Wang A. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed // J. Chromatogr. A. 2012. V. 1237. P. 1. https://doi.org/10.1016/j.chroma.2012.03.003
- Carro A.M., González P., Lorenzo R.A. Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction // J. Chromatogr. A. 2013. V. 1296. P. 214. https://doi.org/10.1016/j.chroma.2013.04.068
- Subedi B., Aguilar L., Robinson E.M., Hageman K.J., Björklund E., Sheesley R.J., Usenko S. Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern // Trends Anal. Chem. 2015. V. 68. P. 119. https://doi.org/10.1016/j.trac.2015.02.011
- Vazquez-Roig P., Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples // Trends Anal. Chem. 2015. V. 71. P. 55. https://doi.org/10.1016/j.trac.2015.04.014
- Hoff R.B., Pizzolato T.M. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications // Trends Anal. Chem. 2018. V. 109. P. 83. https://doi.org/ 10.1016/j.trac.2018.10.002
- Andreu V., Picó Y. Pressurized liquid extraction of organic contaminants in environmental and food samples // Trends Anal. Chem. 2019. V. 118. P. 709. https://doi.org/10.1016/j.trac.2019.06.038
- Cao Y., Liu W., Gong X., Yu J., Tu P., Li J., Song Y. Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review // J. Pharm. Biomed. Anal. 2021. V. 205. Article 114332. https://doi.org/10.1016/j.jpba.2021.114332
- Fontanals N., Pocurull E., Borrull F., Marcé R.M. Clean-up techniques in the pressurized liquid extraction of abiotic environmental solid samples // Trends Environ. Anal. Chem. 2021. V. 29. Article e00111. https://doi.org/10.1016/j.teac.2020.e00111
- Barp L., Višnjevec A.M., Moret S. Pressurized liquid extraction: A powerful tool to implement extraction and purification of food contaminants // Foods. 2023. V. 12. P. 2017. https://doi.org/10.3390/foods12102017
- Smith R.M. Extractions with superheated water // J. Chromatogr. A. 2002. V. 975. P. 31. https://doi.org/10.1016/S0021-9673(02)01225-6
- Weingärtner H., Franck E.U. Supercritical water as a solvent // Angew. Chem. Int. Ed. 2005. V. 44. P. 2672. https://doi.org/10.1002/anie.200462468
- Smith R.M. Superheated water: the ultimate green solvent for separation science // Anal. Bioanal. Chem. // 2006. V. 385. P. 419. https://doi.org/10.1007/s00216-006-0437-y
- Ong E.S., Cheong J S.H., Goh D. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials // J. Chromatogr. A. 2006. V. 1112. P. 92. https://doi.org/10.1016/j.chroma.2005.12.052
- Kronholm J., Hartonen K., Riekkola M.-L. Analytical extractions with water at elevated temperatures and pressures // Trends Anal. Chem. 2007. V. 26. P. 396. https://doi.org/10.1016/j.trac.2007.03.004
- Teo C.C., Tan S.N., Yong J.W. H., Hew C.S., Ong E.S. Pressurized hot water extraction (PHWE) // J. Chromatogr. A. 2010. V. 1217. P. 2484. https://doi.org/10.1016/j.chroma.2009.12.050
- Plaza M., Turner C. Pressurized hot water extraction of bioactives // Trends Anal. Chem. 2015. V. 71. P. 39. https://doi.org/10.1016/j.trac.2015.02.022
- Gbashi S., Adebo O.A., Piater L., Madala. N. E., Njobeh P.B. Subcritical water extraction of biological materials // Sep. Purif. Technol. 2016. V. 46. P. 21. https://doi.org/10.1080/15422119.2016.1170035
- Castro-Puyana M., Marina M.L., Plaza M. Water as green extraction solvent: Principles and reasons for its use // Curr. Opin. Green Sustain. Chem. 2017. V. 5. P. 31. https://doi.org/10.1016/j.cogsc.2017.03.00
- Борисова Д.Р., Статкус М.А., Цизин Г.И., Золотов Ю.А. Вода в субкритическом состоянии: применение в химическом анализе // Журн. аналит. химии. 2017. Т. 72. С. 699. (Borisova D.R., Statkus M.A., Tsizin G.I., Zolotov Y.A. Subcritical water: Use in chemical analysis // J. Anal. Chem. 2017. Т. 72. № 8. С. 823. https://doi.org/10.1134/S1061934817080044)
- Zhang J., Wen C., Zhang H., Duan Y., Ma H. Recent advances in the extraction of bioactive compounds with subcritical water: A review // Trends Food Sci. Technol. 2019. V. 95. P. 183. https://doi.org/10.1016/j.tifs.2019.11.018
- Essien S.O., Young B., Baroutian S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials // Trends Food Sci. Technol. 2020. V. 97. P. 156. https://doi.org/10.1016/j.tifs.2020.01.014
- Cheng Y., Xue F., Yu S., Du S., Yang Y. Subcritical water extraction of natural products // Molecules 2021. V. 26. P. 1. https://doi.org/10.3390/molecules26134004
- Hawthorne S.B. Analytical-scale supercritical fluid extraction // Anal. Chem. 1990. V. 62. P. 633A. https://doi.org/10.1021/ac00210a722
- Janda V. Supercritical fluid extraction in environmental analysis // J. Chromatogr. A. 1993. V. 642. P. 283.
- Camel V., Tambuté A., Caude M. Analytical-scale supercritical fluid extraction: A promising technique for the determination of pollutants in environmental matrices // J. Chromatogr. A. 1993. V. 642. P. 263.
- Bøwadt S., Hawthorne S.B. Supercritical fluid extraction in environmental analysis // J. Chromatogr. A. 1995. V. 703. P. 549. https://doi.org/10.1016/0021-9673(95)00051-n
- Lehotay S. J. Supercritical fluid extraction of pesticides in foods // J. Chromatogr. A. 1997. V. 785. P. 289. https://doi.org/10.1016/s0021-9673(97)00461-5
- Motohashi N., Nagashima H., Párkányi C. Supercritical fluid extraction for the analysis of pesticide residues in miscellaneous samples // J. Biochem. Biophys. Methods. 2000. V. 43. P. 313. https://doi.org/10.1016/s0165-022x(00)00052-x
- Radcliffe C., Maguire K., Lockwood B. Applications of supercritical fluid extraction and chromatography in forensic science // J. Biochem. Biophys. Methods. 2000. V. 43. P. 261. https://doi.org/10.1016/s0165-022x(00)00058-0
- Lang Q., Wai C.M. Supercritical fluid extraction in herbal and natural product studies – A practical review // Talanta. 2001. V. 53. P. 771. https://doi.org/10.1016/S0039-9140(00)00557-9
- Turner C., Eskilsson C.S., Björklund E. Collection in analytical-scale supercritical fluid extraction // J. Chromatogr. A. 2002. V. 947. P. 1. https://doi.org/10.1016/s0021-9673(01)01592-8
- Zougagh M., Valcárcel M., Rı́os A. Supercritical fluid extraction: A critical review of its analytical usefulness // Trends Anal. Chem. 2004. V. 23. P. 399. https://doi.org/10.1016/s0165-9936(04)00524-2
- Anitescu G., Tavlarides L.L. Supercritical extraction of contaminants from soils and sediments // J. Supercrit. Fluids. 2006. V. 38. P. 167. https://doi.org/10.1016/j.supflu.2006.03.024
- Abbas K.A., Mohamed A., Abdulamir A.S., Abas H.A. A review on supercritical fluid extraction as new analytical method // Am. J. Biochem. Biotechnol. 2008. V. 4. P. 345. https://doi.org/10.3844/ajbbsp.2008.345.353
- Sunarso J., Ismadji S. Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: A review // J. Hazard. Mater. 2009. V. 161. P. 1. https://doi.org/10.1016/j.jhazmat.2008.03.069
- Sapkale G., Patil S., Surwase U., Bhatbhage P. Supercritical fluid extraction // Int. J. Chem. Sci. 2010. V. 8. P. 729.
- Herrero M., Mendiola J.A., Cifuentes A., Ibáñez E. Supercritical fluid extraction: Recent advances and applications // J. Chromatogr. A. 2010. V. 1217. P. 2495. https://doi.org/10.1016/j.chroma.2009.12.019
- Machida H., Takesue M., Smith R.L. Green chemical processes with supercritical fluids: Properties, materials, separations and energy // J. Supercrit. Fluids. 2011. V. 60. P. 2. https://doi.org/10.1016/j.supflu.2011.04.016
- Xu L., Zhan X., Zeng Z., Chen R., Li H., Xie T., Wang S. Recent advances on supercritical fluid extraction of essential oils // Afr. J. Pharm. Pharmacol. 2011. V. 5. P. 1196. https://doi.org/ 10.5897/AJPP11.228
- Huang Z., Shi X., Jiang W. Theoretical models for supercritical fluid extraction // J. Chromatogr. A. 2012. V. 1250. P. 2. https://doi.org/10.1016/j.chroma.2012.04.032
- Покровский О. Пробоподготовка в химическом анализе методом сверхкритической флюидной экстракции // Аналитика. 2013. Т. 6. С. 23.
- Pourmortazavi S.M., Rahimi-Nasrabadi, M. Hajimirsadeghic S.S. Supercritical fluid technology in analytical chemistry // Curr. Anal. Chem. 2014. V. 10. P. 3.
- Zoccali M., Donato P., Mondello L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques // Trends Anal. Chem. 2019. V. 116. P. 158. https://doi.org/10.1016/j.trac.2019.04.028
- Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion // J. Chromatogr. A. 1989. V. 475. P. 353.
- Walker C.C., Lott H.M., Barker S.A. Matrix solid-phase dispersion extraction and the analysis of drugs and environmental pollutants in aquatic species // J. Chromatogr. A. 1993. V. 642. P. 225.
- Barker S.A. Applications of matrix solid-phase dispersion in food analysis //. J. Chromatogr. A. 2000. V. 880. P. 63. https://doi.org/10.1016/s0021-9673(99)01290-x
- Barker S.A. Matrix solid-phase dispersion //. J. Chromatogr. A. 2000. V. 885. P. 115.
- Karasová G., Brandšteterová E., Lachová M. Matrix solid phase dispersion as an effective preparation method for food samples and plants before HPLC analysis // Czech J. Food Sci. 2003. V. 21. P. 219.
- Kristenson E.M., Brinkman U.A.Th., Ramos L. Recent advances in matrix solid-phase dispersion // Trends Anal. Chem. 2006. V. 25. P. 96. https://doi.org/10.1016/j.trac.2005.05.011
- Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Bioph. Methods. 2007. V. 70. P. 151. https://doi.org/10.1016/j.jbbm.2006.06.005
- Bogialli S., Di Corcia A. Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs // J. Biochem. Biophys. Methods. 2007. V. 70. P. 163. https://doi.org/10.1016/j.jbbm.2006.07.007
- García-López M., Canosa P. Rodríguez I. Trends and recent applications of matrix solid-phase dispersion // Anal. Bioanal. Chem. 2008. V. 391. P. 963. https://doi.org/10.1007/s00216-008-1898-y
- Moreda-Pineiro J., Alonso-Rodriguez E., Lopez-Mahia P., Muniategui-Lorenzo S., Prada-Rodriguez D., Romaris-Hortas V., Míguez-Framil M., Moreda-Piñeiro A., Bermejo-Barrera P. Matrix solid-phase dispersion of organic compounds and its feasibility for extracting inorganic and organometallic compounds // Trends Anal. Chem. 2009. V. 28. P. 110. https://doi.org/10.1016/j.trac.2008.09.016
- Capriotti A.L., Cavaliere C., Giansanti P., Gubbiotti R., Samperi R., Laganà A. Recent developments in matrix solid-phase dispersion extraction // J. Chromatogr. A. 2010. V. 1217. P. 2521. https://doi.org/10.1016/j.chroma.2010.01.030.
- Capriotti A.L, Cavaliere C, Laganà A, Piovesana S, Samperi R. Recent trends in matrix solid-phase dispersion // Trends Anal. Chem. 2013. V. 43. P. 53.
- Capriotti A.L., Cavaliere C., Foglia P., Samperi R., Stampachiacchiere S., Ventura S., Laganà A. Recent advances and developments in matrix solid-phase dispersion // Trends Anal. Chem. 2015. V. 71. P. 186. https://doi.org/10.1016/j.trac.2015.03.012
- Tu X., Chen W. A review on the recent progress in matrix solid phase dispersion // Molecules. 2018. V. 23. Article 2767. https://doi.org/10.3390/molecules23112767
- Ramos L. Use of new tailored and engineered materials for matrix solid-phase dispersion // Trends Anal. Chem. 2019. V. 118. P. 751. https://doi.org/10.1016/j.trac.2019.07.006
- Wianowska D., Gil M. New insights into the application of MSPD in various fields of analytical chemistry // Trends Anal. Chem. 2019. V. 112. P. 29. https://doi.org/10.1016/j.trac.2018.12.028
- El-Deen A.K. An overview of recent advances and applications of matrix solid-phase dispersion // Sep. Purif. Reviews. 2023. V. 53. P. 1. https://doi.org/10.1080/15422119.2023.2172734
- Anastassiades M., Lehotay S., Stajnbaher D., Schenck F. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce // J. AOAC Int. 2003. V. 86. P. 412.
- Lehotay S.J., Anastassiades M., Majors R.E. The QuEChERS revolution // LCGC Europe. 2010. V. 23. P. 418.
- Wilkowska A., Biziuk M. Determination of pesticide residues in food matrices using the QuEChERS methodology // Food Chem. 2011. V. 125. P. 803. https://doi.org/10.1016/j.foodchem.2010.09.094
- Bruzzoniti M.C., Checchini L., De Carlo R.M., Orlandini S., Rivoira L., Del Bubba M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review // Anal. Bioanal. Chem. 2014. V. 406. P. 4089. https://doi.org/10.1007/s00216-014-7798-4
- González Curbelo M.Á., Socas-Rodríguez B., Herrera-Herrera A., González-Sálamo J., Hernández-Borges J., Rodríguez-Delgado M.Á. Evolution and applications of the QuEChERS method // Trends Anal. Chem. 2015. V. 71. P. 169.
- Rejczak T., Tuzimski T. A review of recent developments and trends in the QuEChERS sample preparation approach // Open Chemistry. 2015. V. 13. P. 980. https://doi.org/10.1515/chem-2015-0109
- Schmidt M.L., Snow N.H. Making the case for QuEChERS-gas chromatography of drugs // Trends Anal. Chem. 2016. V. 75. P. 49. https://doi.org/10.1016/j.trac.2015.07.012
- Pszczolinska K., Michel M. The QuEChERS approach for the determination of pesticide residues in soil samples: An overview // J. AOAC Int. 2016. V. 99. P. 1403. https://doi.org/10.5740/jaoacint.16-0274
- Rahman M.M., Abd El-Aty A.M., Kim S.-W., Shin S.C., Shin H.-C., Shim J.-H. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. // J. Sep. Sci. 2016. V. 40. P. 203. https://doi.org/10.1002/jssc.201600889
- Lawal A., Wong R.C. S., Tan G.H., Abdulra’uf L.B., Alsharif A. M.A. Recent modifications and validation of QuEChERS-dSPE coupled to LC–MS and GC–MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables: Review. // J. Chromatogr. Sci. 2018. V. 56. P. 656. https://doi.org/10.1093/chromsci/bmy032
- Zhang C., Deng Y., Zheng J., Zhang Y., Yang L., Liao C., Su L., Zhou Y., Gong D., Chen L., Luo A. The application of the QuEChERS methodology in the determination of antibiotics in food: A review // Trends Anal. Chem. 2019. V. 118. P. 517. https://doi.org/10.1016/j.trac.2019.06.01
- Santana-Mayor Á., Socas-Rodríguez B., Herrera-Herrera A.V., Rodríguez-Delgado M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis // Trends Anal. Chem. 2019. V. 116. P. 214. https://doi.org/10.1016/j.trac.2019.04.018
- Musarurwa H., Chimuka L., Pakade V.E., Tavengwa N.T. Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis // J. Food Compos. Anal. 2019. Article 103314. https://doi.org/10.1016/j.jfca.2019.103314
- Alcântara D.B., Fernandes T.S. M., Nascimento H.O., Lopes A.F., Menezes M.G. G., Lima A.C. A., Carvalho T.V., Grinberg P., Milhome M.A. L., Oliveira A.H. B., Becker H., Zocolo G.J., Nascimento R.F. Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade // Food Chem. 2019. V. 298. Article 124958. https://doi.org/10.1016/j.foodchem.2019.124958
- Perestrelo R., Silva P., Porto-Figueira P., Pereira J.A. M., Silva C., Medina S., Câmara J.S. QuEChERS – Fundamentals, relevant improvements, applications and future trend // Anal. Chim. Acta. 2019. V. 1070. P. 1. https://doi.org/10.1016/j.aca.2019.02.036
- Kim L., Lee D., Cho H.-K., Choi S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals // Trends Environ. Anal. Chem. 2019. V. 22. Article e00063. https://doi.org/10.1016/j.teac.2019.e00063
- González-Curbelo M.Á., Varela-Martínez D.A., Riaño-Herrera D.A. Pesticide-residue analysis in soils by the QuEChERS method: A review // Molecules. 2022. V. 27. Article 4323. https://doi.org/10.3390/molecules27134323
- Lehotay S.S. The QuEChERSER mega-method // LCGC North America. 2022. V. 40. P. 13.
- Zhou Q., Yu C., Meng L., Ji W., Liu S., Pan C., Lan T., Wang L., Qu B. Research progress of applications for nano-materials in improved QuEChERS method // Crit. Rev. Food Sci. Nutr. 2023. P. 1. https://doi.org/10.1080/10408398.2023.2225613
- Santana-Mayor A., Rodríguez-Ramos R., Herrera-Herrera A.V., Socas-Rodríguez B., Rodríguez-Delgado M.A. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020–2023) // Trends Anal. Chem. 2023. V. 169. Article 117375.
- Sadighara P., Basaran B., Afshar A., Nazmara S. Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review // Microchem. J. 2024. V. 197. Article 109711.
Supplementary files
