История развития метода бесконтактной кондуктометрии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Создание химических сенсорных устройств, работающих в бесконтактном режиме, является актуальной задачей в связи с потребностью различных отраслей промышленности в быстром, простом и недорогом определении химического состава сред неинвазивным способом. Одним из перспективных направлений при разработке аналитических устройств с такими характеристиками является использование высокочастотных электрических сигналов. В обзоре рассматривается эволюция метода высокочастотной бесконтактной кондуктометрии, а также других методов и устройств, работающих на аналогичных физических принципах (диэлектрической спектроскопии, микроволновых сенсоров, C4D-детекторов).

Об авторах

Е. А. Юськина

Санкт-Петербургский государственный университет

Email: d.kirsanov@gmail.com

Институт химии

Россия, Университетский просп. 26, Санкт-Петербург, Петергоф, 198504

В. В. Панчук

Санкт-Петербургский государственный университет; Институт аналитического приборостроения Российской академии наук

Email: d.kirsanov@gmail.com

Санкт-Петербургский государственный университет, Институт химии

Россия, Университетский просп. 26, Санкт-Петербург, Петергоф, 198504; ул. Ивана Черных, 31–33, Санкт-Петербург, 198095

Д. О. Кирсанов

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: d.kirsanov@gmail.com

Институт химии

Россия, Университетский просп. 26,Санкт-Петербург, Петергоф, 198504

Список литературы

  1. Relis M. An Electrodeless Method for Measuring the Low-Frequency Conductivity of Electrolytes. M.S. Thesis. Cambridge: Mass. Institute of Technology, 1947.
  2. Brown N.L., Hamon B.V. An inductive salinometer // Deep Sea Res. 1961. V. 8. P. 65. https://doi.org/10.1016/0146-6313(61)90015-6
  3. Light T.S. Electrodeless conductivity / Electrochemistry, Past and Present. United States: ACS Symposium Series, 1989. V. 390. P. 429. https://doi.org/10.1021/bk-1989-0390.ch029
  4. Park K., Partial equivalent conductance of electrolytes in sea water // Deep Sea Res. 1964. V. 11. P. 729. https://doi.org/10.1016/0011-7471(64)90946-5
  5. Calvert R., Cornelius J.A., Griffiths V.S., Stock D.I. The determination of the electrical conductivities of some concentrated electrolyte solutions using a transformer bridge // J. Phys. Chem. 1958. V. 62. P. 47. https://doi.org/10.1021/j150559a013
  6. Lavagnino B., Alby B. Differential transformer for resistance measurements // Ann. Chim. 1959. V. 49. P. 1272.
  7. Gupta S.R., Hills, G.J. J. A precision electrode-less conductance cell // Sci. Instrum. 1956. V. 33. P. 313.
  8. Johnson C.M., Hart G.E. Improved electrodeless toroidal conductivity analyzer // Anal. Instrum. 1967. V. 4. P. 23.
  9. Pungor E. Conductometry and oscillometry // J. Electroanal. Chem. 1962. V. 3. P. 289. https://doi.org/10.1016/0022-0728(62)85022-0
  10. Hall J. L. High-frequency titration theoretical and practical aspects // Anal. Chem. 1952. V. 28. № 8. P. 1240. https://doi.org/10.1021/ac60068a002
  11. Hitchcock E.T., Elving P.J. Lewis acid-base titrations employing megacycle-frequency oscillators: Titration involving stannic chloride in acetonitrile and benzene solution // Anal. Chim. Acta. 1963. V. 28. P. 301. https://doi.org/10.1016/S0003-2670(00)87237-2
  12. Ateeq M., Wylie S., Al-Shammaa A., Al-Nageim H. Microwave spectroscopy: A potential technique to analyse bitumen dielectric and physical properties // Meas. Sci. Technol. 2012. V. 23. Article 085503. https://doi.org/10.1088/0957-0233/23/8/085503
  13. Yaroshenko I., Kirsanov D., Marjanovic M., Lieberzeit P.A., Korostynska O., Mason A., et al. Real-time water quality monitoring with chemical sensors // Sensors. 2020. V. 20. P. 1. https://doi.org/10.3390/s20123432
  14. Tang P., Zhao L., Ren L., Zhao Z., Yao Y. Real time monitoring of surface water pollution using microwave system // J. Electromagn. Waves Appl. 2008. V. 22. P. 767. https://doi.org/10.1163/156939308784159570
  15. Liang Y., Ma M., Zhang F., Liu F., Lu T., Liu Z., Li Y. Wireless microfluidic sensor for metal ion detection in water // ACS Omega. 2021. V. 6. P. 9302. https://doi.org/10.1021/acsomega.1c00941
  16. Harnsoongnoen S., Wanthong A. A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3 // Sens. Actuators B. 2021. V. 331. Article 129355. https://doi.org/10.1016/j.snb.2020.129355
  17. Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Planar microwave sensor for detection and discrimination of aqueous organic and inorganic solutions // Sens. Actuators B. 2018. V. 271. P. 300. https://doi.org/10.1016/j.snb.2018.05.077
  18. Harnsoongnoen S., Buranrat B. Advances in a microwave sensor-type interdigital capacitor with a hexagonal complementary split-ring resonator for glucose level measurement // Chemosensors. 2023. V. 11. P. 257. https://doi.org/10.3390/chemosensors11040257
  19. Baghelani M., Hosseini N., Daneshmand M. Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators // Measurement. 2021. V. 177. Article 109286. https://doi.org/10.1016/j.measurement.2021.109286
  20. Carr A.R., Chan Y.J., Reuel N.F. Contact-Free, Passive, electromagnetic resonant sensors for enclosed biomedical applications: A perspective on opportunities and challenges // ACS Sens. 2023. V. 8. P. 943. https://doi.org/10.1021/acssensors.2c02552
  21. Markx G.H., Davey C.L. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology // Enzyme Microb. Technol. 1999. V. 25. P. 161. https://doi.org/10.1016/S0141-0229(99)00008-3
  22. Russel M., Sophocleous M., JiaJia S., Xu W., Xiao L., Maskow T., et al. High-frequency, dielectric spectroscopy for the detection of electrophysiological/biophysical differences in different bacteria types and concentrations // Anal. Chim. Acta. 2018. V. 1028. P. 86. https://doi.org/10.1016/j.aca.2018.04.045
  23. Castro-Giráldez M., Botella P., Toldrá F., Fito P. Low-frequency dielectric spectrum to determine pork meat quality // Innov. Food Sci. Emerg. Technol. 2010. V. 11. P. 376. https://doi.org/10.1016/j.ifset.2010.01.011
  24. Harindran A., Madhurima V. On the efficacy of dielectric spectroscopy in the identification of onset of the various stages in lactic acid coagulation of milk // J. Microw. Power Electromagn. Energy. 2020. V. 54. P. 161. https://doi.org/10.1080/08327823.2020.1755484
  25. Nogueira T., do Lago C.L. Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection // Microchem. J. 2011. V. 99. P. 267. https://doi.org/10.1016/j.microc.2011.05.014
  26. Nguyen T.A.H., Nguyen V.R., Le D.D., Nguyen T.T.B., Cao V.H., Nguyen T.K.D., et al. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection // J. Chromatogr. A. 2016. V. 1457. P. 151. https://doi.org/10.1016/j.chroma.2016.06.050
  27. Drevinskas T., Mora M.F., Ferreira Santos M.S., Noell A.C., Willis P.A. Submersible capillary electrophoresis analyzer: A proof-of-concept demonstration of an in situ instrument for future missions to ocean worlds // Anal. Chem. 2023. V. 95. № 27. P. 10249. https://doi.org/10.1021/acs.analchem.3c00572
  28. Travassos Lemos M.A., Cassella R.J., de Jesus D.P. A simple analytical method for determining inorganic anions and formate in virgin olive oils by capillary electrophoresis with capacitively coupled contactless conductivity detection // Food Control. 2015. V. 57. P. 327. https://doi.org/10.1016/j.foodcont.2015.04.026
  29. Fukana N., Sonsa-ard T., Chantipmanee N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor as detector for microfluidic paper-based analytical device with application to unique rapid method for quantifying sulfite preservative // Sens. Actuators B. 2021. V. 339. Article 129838. https://doi.org/10.1016/j.snb.2021.129838
  30. Sonsa-ard T., Chantipmanee N., Fukana N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor employing moist paper as absorbent for in-situ detection of generated carbon dioxide gas // Anal. Chim. 2020. V. 1118. P. 44. https://doi.org/10.1016/j.aca.2020.04.044
  31. Zhang X., Jiang X., Yang Q., Wang X., Zhang Y., Zhao J., et al. Online monitoring of bacterial growth with an electrical sensor // Anal. Chem. 2018. V. 90. P. 6006. https://doi.org/10.1021/acs.analchem.8b01214
  32. Piccard A., Frivold A. Demonstration de courants d’induction produits sans electrodes dans electrolyte // Archives des Sciences Physiques et Naturelles. 1920. V. 5. № 2.
  33. Forman J., Crisp D. The radio-frequency absorption spectra of solutions of electrolytes // Trans. Faraday Soc. 1946. V. 42. P. 186. https://doi.org/10.1039/TF946420A186
  34. West P.W., Senisei P., Burkhalter T.S. Determination of water in alcohols by means of high-frequency oscillators // Anal. Chem. 1952. V. 28. № 8. P. 1250. https://doi.org/10.1021/AC60068A006
  35. Reilley C.N., Mccurdy W.H. JR. Principles of high frequency titrimetry // Anal. Chem. 1953. V. 25. № 1. P. 86. https://doi.org/10.1021/ac60073a014
  36. Mason A., Wylie S., Korostynska O., Cordova-lopez L. E., Al-Shamma’a A. I. Flexible e-textile sensors for realtime health monitoring at microwave frequencies // Int. J. Smart Sens. Intell. Syst. 2014. V. 7. № 1. P. 31. https://doi.org/10.21307/ijssis-2017-644
  37. Goh J.H., Mason A., Al-Shamma’a A.I., Field M., Browning P. Lactate detection using microwave spectroscopy for in situ medical applications // Int. J. Smart Sens. Intell. Syst. 2011. V. 4. № 3. P. 338. https://doi.org/10.21307/ijssis-2017-443
  38. Korostynska O., Mason A., Al-Shammaa A.I. Flexible microwave sensors for real-time analysis of water contaminants // J. Electromagn. Waves Appl. 2013. V. 27. № 16. P. 2075. https://doi.org/10.1080/09205071.2013.832393
  39. Ateeq M., Shaw A., Garrett R., Dickson P. A proof of concept study on utilising a non-invasive microwave analysis technique to characterise silver based materials in aqueous solution // Sens. Imaging. 2017. V. 18. P. 1. https://doi.org/10.1007/s11220-017-0162-y
  40. Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Microwave sensor for nitrate and phosphate concentration sensing // IEEE Sens. J. 2019. V. 19. P. 2950. https://doi.org/10.1109/JSEN.2018.2890462
  41. Zhao K., Liu Y., Zhang Q. Dielectric behavior of adulterated milk with urea and water // J. Mol. Liq. 2019. V. 273. P. 37. https://doi.org/10.1016/j.molliq.2018.09.133
  42. Harris C.M., Kell D.B. The estimation of microbial biomass // Biosensors. 1985. V. 1. P. 17. https://doi.org/10.1016/0265-928X(85)85005-7
  43. Grant E.H., Sheppard R.J., South G.P. Dielectric Behaviour of Biological Molecules in Solution. London: Oxford University Press, 1978. P. 237.
  44. Pethig R. Dielectric properties of biological materials: Biophysical and medical applications // IEEE Trans. Electr. Insul. 1984. V. 19. № 5. P. 453. https://doi.org/10.1109/TEI.1984.298769
  45. Fernandez R.E., Rohani A., Farmehini V., Swami N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems // Anal. Chim. Acta. 2017. V. 966. P. 11. https://doi.org/10.1016/j.aca.2017.02.024
  46. Harris C.M., Todd R.W., Bungard S.J., Lovitt R.W., Morris J.G., Kell D.B. Dielectric permittivity of microbial suspensions at radio frequencies: A novel method for the real-time estimation of microbial biomass // Enzyme Microb. Technol. 1987. V. 9. P. 181. https://doi.org/10.1016/0141-0229(87)90075-5
  47. Zemann A.J., Schnell E., Volgger D., Bonn G.K. Contactless conductivity detection for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 563. https://doi.org/10.1021/ac9707592
  48. Fracassi da Silva J.A., do Lago C.L. An oscillometric detector for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 4339. https://doi.org/10.1021/ac980185g
  49. Feng Z., Li F., Huang Y., Gao J., Hu J., Xu Y. Simultaneous quantitative analysis of six cations in three biodiesel and their feedstock oils by an ion-exchange chromatography system without chemical suppression // Energy Fuels. 2017. V. 31. P. 3921. https://doi.org/10.1021/acs.energyfuels.6b01574
  50. Hoang B.A., Tran Thanh H., Nguyen Thi Ngoc, Pham Ngoc T., K. Do Trung, Le N.T, et al. A wireless passive capacitively coupled contactless conductivity detection (WPC4D) for microfluidic flow monitoring // IEEE Sensors. 2021. P. 2. https://doi.org/10.1109/SENSORS47087.2021.9639815
  51. Kent M., Knöchel R., Daschner F., Berger U.-K. Composition of foods including added water using microwave dielectric spectra // Food Control. V. 12. P. 467. https://doi.org/10.1016/S0956-7135(01)00021-4
  52. Naderi-Boldaji M., Mishra P., Ahmadpour-Samani M., Ghasemi-Varnamkhasti, M., Ghanbarian D., Izadi Z. Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup // Measurement. 2018. V. 127. P. 518. https://doi.org/10.1016/j.measurement.2018.06.015
  53. Regier M., Yu X., Ghio S., Danner T., Schubert H. Dielectric spectroscopy and principal component analysis as a method for oil fraction determination in oil-in water-emulsions with varying salt content / Advances in Microwave and Radio Frequency Processing / Ed. Willert-Porada M. Springer, 2006. P. 129. https://doi.org/10.1007/978-3-540-32944-2_15
  54. Yuskina E., Makarov N., Khaydukova M., Filatenkova T., Shamova O., Semenov V., Panchuk V., Kirsanov D. A simple contactless high-frequency electromagnetic sensor: Proof of concept // Anal. Chem. 2022. V. 94. № 35. P. 11978. https://doi.org/10.1021/acs.analchem.2c02067

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024