История развития метода бесконтактной кондуктометрии
- Авторы: Юськина Е.А.1, Панчук В.В.1,2, Кирсанов Д.О.1
-
Учреждения:
- Санкт-Петербургский государственный университет
- Институт аналитического приборостроения Российской академии наук
- Выпуск: Том 79, № 6 (2024)
- Страницы: 544-554
- Раздел: ОБЗОРЫ
- Статья получена: 31.01.2025
- URL: https://archivog.com/0044-4502/article/view/650202
- DOI: https://doi.org/10.31857/S0044450224060017
- EDN: https://elibrary.ru/tvyoys
- ID: 650202
Цитировать
Аннотация
Создание химических сенсорных устройств, работающих в бесконтактном режиме, является актуальной задачей в связи с потребностью различных отраслей промышленности в быстром, простом и недорогом определении химического состава сред неинвазивным способом. Одним из перспективных направлений при разработке аналитических устройств с такими характеристиками является использование высокочастотных электрических сигналов. В обзоре рассматривается эволюция метода высокочастотной бесконтактной кондуктометрии, а также других методов и устройств, работающих на аналогичных физических принципах (диэлектрической спектроскопии, микроволновых сенсоров, C4D-детекторов).
Об авторах
Е. А. Юськина
Санкт-Петербургский государственный университет
Email: d.kirsanov@gmail.com
Институт химии
Россия, Университетский просп. 26, Санкт-Петербург, Петергоф, 198504В. В. Панчук
Санкт-Петербургский государственный университет; Институт аналитического приборостроения Российской академии наук
Email: d.kirsanov@gmail.com
Санкт-Петербургский государственный университет, Институт химии
Россия, Университетский просп. 26, Санкт-Петербург, Петергоф, 198504; ул. Ивана Черных, 31–33, Санкт-Петербург, 198095Д. О. Кирсанов
Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: d.kirsanov@gmail.com
Институт химии
Россия, Университетский просп. 26,Санкт-Петербург, Петергоф, 198504Список литературы
- Relis M. An Electrodeless Method for Measuring the Low-Frequency Conductivity of Electrolytes. M.S. Thesis. Cambridge: Mass. Institute of Technology, 1947.
- Brown N.L., Hamon B.V. An inductive salinometer // Deep Sea Res. 1961. V. 8. P. 65. https://doi.org/10.1016/0146-6313(61)90015-6
- Light T.S. Electrodeless conductivity / Electrochemistry, Past and Present. United States: ACS Symposium Series, 1989. V. 390. P. 429. https://doi.org/10.1021/bk-1989-0390.ch029
- Park K., Partial equivalent conductance of electrolytes in sea water // Deep Sea Res. 1964. V. 11. P. 729. https://doi.org/10.1016/0011-7471(64)90946-5
- Calvert R., Cornelius J.A., Griffiths V.S., Stock D.I. The determination of the electrical conductivities of some concentrated electrolyte solutions using a transformer bridge // J. Phys. Chem. 1958. V. 62. P. 47. https://doi.org/10.1021/j150559a013
- Lavagnino B., Alby B. Differential transformer for resistance measurements // Ann. Chim. 1959. V. 49. P. 1272.
- Gupta S.R., Hills, G.J. J. A precision electrode-less conductance cell // Sci. Instrum. 1956. V. 33. P. 313.
- Johnson C.M., Hart G.E. Improved electrodeless toroidal conductivity analyzer // Anal. Instrum. 1967. V. 4. P. 23.
- Pungor E. Conductometry and oscillometry // J. Electroanal. Chem. 1962. V. 3. P. 289. https://doi.org/10.1016/0022-0728(62)85022-0
- Hall J. L. High-frequency titration theoretical and practical aspects // Anal. Chem. 1952. V. 28. № 8. P. 1240. https://doi.org/10.1021/ac60068a002
- Hitchcock E.T., Elving P.J. Lewis acid-base titrations employing megacycle-frequency oscillators: Titration involving stannic chloride in acetonitrile and benzene solution // Anal. Chim. Acta. 1963. V. 28. P. 301. https://doi.org/10.1016/S0003-2670(00)87237-2
- Ateeq M., Wylie S., Al-Shammaa A., Al-Nageim H. Microwave spectroscopy: A potential technique to analyse bitumen dielectric and physical properties // Meas. Sci. Technol. 2012. V. 23. Article 085503. https://doi.org/10.1088/0957-0233/23/8/085503
- Yaroshenko I., Kirsanov D., Marjanovic M., Lieberzeit P.A., Korostynska O., Mason A., et al. Real-time water quality monitoring with chemical sensors // Sensors. 2020. V. 20. P. 1. https://doi.org/10.3390/s20123432
- Tang P., Zhao L., Ren L., Zhao Z., Yao Y. Real time monitoring of surface water pollution using microwave system // J. Electromagn. Waves Appl. 2008. V. 22. P. 767. https://doi.org/10.1163/156939308784159570
- Liang Y., Ma M., Zhang F., Liu F., Lu T., Liu Z., Li Y. Wireless microfluidic sensor for metal ion detection in water // ACS Omega. 2021. V. 6. P. 9302. https://doi.org/10.1021/acsomega.1c00941
- Harnsoongnoen S., Wanthong A. A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3 // Sens. Actuators B. 2021. V. 331. Article 129355. https://doi.org/10.1016/j.snb.2020.129355
- Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Planar microwave sensor for detection and discrimination of aqueous organic and inorganic solutions // Sens. Actuators B. 2018. V. 271. P. 300. https://doi.org/10.1016/j.snb.2018.05.077
- Harnsoongnoen S., Buranrat B. Advances in a microwave sensor-type interdigital capacitor with a hexagonal complementary split-ring resonator for glucose level measurement // Chemosensors. 2023. V. 11. P. 257. https://doi.org/10.3390/chemosensors11040257
- Baghelani M., Hosseini N., Daneshmand M. Non-contact real-time water and brine concentration monitoring in crude oil based on multi-variable analysis of microwave resonators // Measurement. 2021. V. 177. Article 109286. https://doi.org/10.1016/j.measurement.2021.109286
- Carr A.R., Chan Y.J., Reuel N.F. Contact-Free, Passive, electromagnetic resonant sensors for enclosed biomedical applications: A perspective on opportunities and challenges // ACS Sens. 2023. V. 8. P. 943. https://doi.org/10.1021/acssensors.2c02552
- Markx G.H., Davey C.L. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology // Enzyme Microb. Technol. 1999. V. 25. P. 161. https://doi.org/10.1016/S0141-0229(99)00008-3
- Russel M., Sophocleous M., JiaJia S., Xu W., Xiao L., Maskow T., et al. High-frequency, dielectric spectroscopy for the detection of electrophysiological/biophysical differences in different bacteria types and concentrations // Anal. Chim. Acta. 2018. V. 1028. P. 86. https://doi.org/10.1016/j.aca.2018.04.045
- Castro-Giráldez M., Botella P., Toldrá F., Fito P. Low-frequency dielectric spectrum to determine pork meat quality // Innov. Food Sci. Emerg. Technol. 2010. V. 11. P. 376. https://doi.org/10.1016/j.ifset.2010.01.011
- Harindran A., Madhurima V. On the efficacy of dielectric spectroscopy in the identification of onset of the various stages in lactic acid coagulation of milk // J. Microw. Power Electromagn. Energy. 2020. V. 54. P. 161. https://doi.org/10.1080/08327823.2020.1755484
- Nogueira T., do Lago C.L. Determination of Ca, K, Mg, Na, sulfate, phosphate, formate, acetate, propionate, and glycerol in biodiesel by capillary electrophoresis with capacitively coupled contactless conductivity detection // Microchem. J. 2011. V. 99. P. 267. https://doi.org/10.1016/j.microc.2011.05.014
- Nguyen T.A.H., Nguyen V.R., Le D.D., Nguyen T.T.B., Cao V.H., Nguyen T.K.D., et al. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection // J. Chromatogr. A. 2016. V. 1457. P. 151. https://doi.org/10.1016/j.chroma.2016.06.050
- Drevinskas T., Mora M.F., Ferreira Santos M.S., Noell A.C., Willis P.A. Submersible capillary electrophoresis analyzer: A proof-of-concept demonstration of an in situ instrument for future missions to ocean worlds // Anal. Chem. 2023. V. 95. № 27. P. 10249. https://doi.org/10.1021/acs.analchem.3c00572
- Travassos Lemos M.A., Cassella R.J., de Jesus D.P. A simple analytical method for determining inorganic anions and formate in virgin olive oils by capillary electrophoresis with capacitively coupled contactless conductivity detection // Food Control. 2015. V. 57. P. 327. https://doi.org/10.1016/j.foodcont.2015.04.026
- Fukana N., Sonsa-ard T., Chantipmanee N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor as detector for microfluidic paper-based analytical device with application to unique rapid method for quantifying sulfite preservative // Sens. Actuators B. 2021. V. 339. Article 129838. https://doi.org/10.1016/j.snb.2021.129838
- Sonsa-ard T., Chantipmanee N., Fukana N., Hauser P.C., Wilairat P., Nacapricha D. Contactless conductivity sensor employing moist paper as absorbent for in-situ detection of generated carbon dioxide gas // Anal. Chim. 2020. V. 1118. P. 44. https://doi.org/10.1016/j.aca.2020.04.044
- Zhang X., Jiang X., Yang Q., Wang X., Zhang Y., Zhao J., et al. Online monitoring of bacterial growth with an electrical sensor // Anal. Chem. 2018. V. 90. P. 6006. https://doi.org/10.1021/acs.analchem.8b01214
- Piccard A., Frivold A. Demonstration de courants d’induction produits sans electrodes dans electrolyte // Archives des Sciences Physiques et Naturelles. 1920. V. 5. № 2.
- Forman J., Crisp D. The radio-frequency absorption spectra of solutions of electrolytes // Trans. Faraday Soc. 1946. V. 42. P. 186. https://doi.org/10.1039/TF946420A186
- West P.W., Senisei P., Burkhalter T.S. Determination of water in alcohols by means of high-frequency oscillators // Anal. Chem. 1952. V. 28. № 8. P. 1250. https://doi.org/10.1021/AC60068A006
- Reilley C.N., Mccurdy W.H. JR. Principles of high frequency titrimetry // Anal. Chem. 1953. V. 25. № 1. P. 86. https://doi.org/10.1021/ac60073a014
- Mason A., Wylie S., Korostynska O., Cordova-lopez L. E., Al-Shamma’a A. I. Flexible e-textile sensors for realtime health monitoring at microwave frequencies // Int. J. Smart Sens. Intell. Syst. 2014. V. 7. № 1. P. 31. https://doi.org/10.21307/ijssis-2017-644
- Goh J.H., Mason A., Al-Shamma’a A.I., Field M., Browning P. Lactate detection using microwave spectroscopy for in situ medical applications // Int. J. Smart Sens. Intell. Syst. 2011. V. 4. № 3. P. 338. https://doi.org/10.21307/ijssis-2017-443
- Korostynska O., Mason A., Al-Shammaa A.I. Flexible microwave sensors for real-time analysis of water contaminants // J. Electromagn. Waves Appl. 2013. V. 27. № 16. P. 2075. https://doi.org/10.1080/09205071.2013.832393
- Ateeq M., Shaw A., Garrett R., Dickson P. A proof of concept study on utilising a non-invasive microwave analysis technique to characterise silver based materials in aqueous solution // Sens. Imaging. 2017. V. 18. P. 1. https://doi.org/10.1007/s11220-017-0162-y
- Harnsoongnoen S., Wanthong A., Charoen-In U., Siritaratiwat A. Microwave sensor for nitrate and phosphate concentration sensing // IEEE Sens. J. 2019. V. 19. P. 2950. https://doi.org/10.1109/JSEN.2018.2890462
- Zhao K., Liu Y., Zhang Q. Dielectric behavior of adulterated milk with urea and water // J. Mol. Liq. 2019. V. 273. P. 37. https://doi.org/10.1016/j.molliq.2018.09.133
- Harris C.M., Kell D.B. The estimation of microbial biomass // Biosensors. 1985. V. 1. P. 17. https://doi.org/10.1016/0265-928X(85)85005-7
- Grant E.H., Sheppard R.J., South G.P. Dielectric Behaviour of Biological Molecules in Solution. London: Oxford University Press, 1978. P. 237.
- Pethig R. Dielectric properties of biological materials: Biophysical and medical applications // IEEE Trans. Electr. Insul. 1984. V. 19. № 5. P. 453. https://doi.org/10.1109/TEI.1984.298769
- Fernandez R.E., Rohani A., Farmehini V., Swami N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems // Anal. Chim. Acta. 2017. V. 966. P. 11. https://doi.org/10.1016/j.aca.2017.02.024
- Harris C.M., Todd R.W., Bungard S.J., Lovitt R.W., Morris J.G., Kell D.B. Dielectric permittivity of microbial suspensions at radio frequencies: A novel method for the real-time estimation of microbial biomass // Enzyme Microb. Technol. 1987. V. 9. P. 181. https://doi.org/10.1016/0141-0229(87)90075-5
- Zemann A.J., Schnell E., Volgger D., Bonn G.K. Contactless conductivity detection for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 563. https://doi.org/10.1021/ac9707592
- Fracassi da Silva J.A., do Lago C.L. An oscillometric detector for capillary electrophoresis // Anal. Chem. 1998. V. 70. P. 4339. https://doi.org/10.1021/ac980185g
- Feng Z., Li F., Huang Y., Gao J., Hu J., Xu Y. Simultaneous quantitative analysis of six cations in three biodiesel and their feedstock oils by an ion-exchange chromatography system without chemical suppression // Energy Fuels. 2017. V. 31. P. 3921. https://doi.org/10.1021/acs.energyfuels.6b01574
- Hoang B.A., Tran Thanh H., Nguyen Thi Ngoc, Pham Ngoc T., K. Do Trung, Le N.T, et al. A wireless passive capacitively coupled contactless conductivity detection (WPC4D) for microfluidic flow monitoring // IEEE Sensors. 2021. P. 2. https://doi.org/10.1109/SENSORS47087.2021.9639815
- Kent M., Knöchel R., Daschner F., Berger U.-K. Composition of foods including added water using microwave dielectric spectra // Food Control. V. 12. P. 467. https://doi.org/10.1016/S0956-7135(01)00021-4
- Naderi-Boldaji M., Mishra P., Ahmadpour-Samani M., Ghasemi-Varnamkhasti, M., Ghanbarian D., Izadi Z. Potential of two dielectric spectroscopy techniques and chemometric analyses for detection of adulteration in grape syrup // Measurement. 2018. V. 127. P. 518. https://doi.org/10.1016/j.measurement.2018.06.015
- Regier M., Yu X., Ghio S., Danner T., Schubert H. Dielectric spectroscopy and principal component analysis as a method for oil fraction determination in oil-in water-emulsions with varying salt content / Advances in Microwave and Radio Frequency Processing / Ed. Willert-Porada M. Springer, 2006. P. 129. https://doi.org/10.1007/978-3-540-32944-2_15
- Yuskina E., Makarov N., Khaydukova M., Filatenkova T., Shamova O., Semenov V., Panchuk V., Kirsanov D. A simple contactless high-frequency electromagnetic sensor: Proof of concept // Anal. Chem. 2022. V. 94. № 35. P. 11978. https://doi.org/10.1021/acs.analchem.2c02067
Дополнительные файлы
