Application of machine learning for predicting phase behavior of interpolyelectrolyte complexes in water–salt media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Water-salt solutions of interpolyelectrolyte complexes (IPEC) are a classic example of “smart” systems, the phase equilibrium in which is regulated by many factors associated with both the parameters of the polymer components and the physical and chemical properties of the environment. This paper presents a model created on the basis of machine learning for predicting the region of existence of water-soluble IPECs. An approach is proposed for independently taking into account the physicochemical properties of polyelectrolytes and the properties of the environment. The developed model is universal and can be used to predict the properties of multicomponent systems of various chemical natures.

Full Text

Restricted Access

About the authors

I. V. Grigoryan

Lomonosov Moscow State University; Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991; Bldg. 7, 11, Mokhovaya St., Moscow, 125009

L. A. Antyufrieva

Skolkovo Institute of Science and Technology

Email: sybatchin@mail.ru
Russian Federation, Bldg. 1, 30, Bolshoy Blvd., Moscow, 121205

A. P. Grigoryan

Lomonosov Moscow State University

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

A. A. Korigodsky

Lomonosov Moscow State University

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

C. Junyang

Lomonosov Moscow State University

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

Ya. Shuxiong

Lomonosov Moscow State University

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

V. A. Pigareva

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: sybatchin@mail.ru
Russian Federation, 28, Vavilov St., Moscow, 119334

A. E. Tishchenko

Lomonosov Moscow State University

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

G. B. Khomutov

Lomonosov Moscow State University; Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences

Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991; Bldg. 7, 11, Mokhovaya St., Moscow, 125009

A. V. Sybachin

Lomonosov Moscow State University

Author for correspondence.
Email: sybatchin@mail.ru
Russian Federation, 1, Leninskie Gory, Moscow, 199991

References

  1. Izumrudov V.A., Mussabayeva B.K., Kassymova Z.S., Klivenko A.N., Orazzhanova L.K. Interpolyelectrolyte complexes: advances and prospects of application // Russ. Chem. Rev. 2019. V. 88. P. 1046–1062. https://doi.org/10.1070/RCR4877
  2. Fares H.M., Schlenoff J.B. Equilibrium overcompensation in polyelectrolyte complexes // Macromolecules. 2017. V. 50. № 10. P. 3968–3978. https://doi.org/10.1021/acs.macromol.7b00665
  3. Fu J., Schlenoff J.B. Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic // J. Am. Chem. Soc. 2016. V. 138. № 3. P. 980–990. https://doi.org/10.1021/jacs.5b11878
  4. Meka V.S., Sing M.K.G., Pichika M.R., Nali S.R., Kolapalli V.R.M., Kesharwani P. A comprehensive review on polyelectrolyte complexes // Drug Discov. Today. 2017. V. 22. № 11. P. 1697–1706. https://doi.org/10.1016/j.drudis.2017.06.008
  5. Dautzenberg H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl // Macromolecules. 1997. V. 30. № 25. P. 7810–7815. https://doi.org/10.1021/ma970803f
  6. Kabanov V. A. Fundamentals of polyelectrolyte complexes in solution and the bulk // In: Decher G., Schlenoff J. B. (Eds.) Multilayer thin films: sequential assembly of nanocomposite materials. Weinheim: Wiley-VCH. 2003. P. 47–86. https://doi.org/10.1002/3527600574.ch2
  7. Prajapati B.G., Sharma J.B., Sharma S., Trivedi N.D., Gaur M., Kapoor D.U. Harnessing polyelectrolyte complexes for precision cancer targeting: a comprehensive review // Med Oncol. 2024. V. 41. № 6. P. 145. https://doi.org/10.1007/s12032-024-02354-0
  8. Bertin A. Polyelectrolyte complexes of DNA and polycations as gene delivery vectors // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state II. Advances in polymer science. Berlin: Springer. 2013. V. 256. P. 155–188. https://doi.org/10.1007/12_2013_218
  9. Durmaz E.N., Baig M.I., Willott J.D., de Vos W.M. Polyelectrolyte complex membranes via salinity change induced aqueous phase separation // ACS Appl. Polym. Mater. 2020. V. 2. № 7. P. 2612–2621. https://doi.org/10.1021/acsapm.0c00255
  10. Chen J., He R., Chen H., Hu B., Tokay B., Zhang Y.-B., He T. Kinetic aspects of salinity stability of layer-by-layer polyelectrolyte nanofiltration membranes: Impact of soaking time, types of ions and crosslinking // J. Membrane Sci. 2024. V. 709. P. 123087. https://doi.org/10.1016/j.memsci.2024.123087
  11. Bediako J.K., El Ouardi Y., Massima Mouele E.S., Mensah B., Repo E. Polyelectrolyte and polyelectrolyte complex-incorporated adsorbents in water and wastewater remediation – A review of recent advances // Chemosphere. 2023. V. 325. P. 138418. https://doi.org/10.1016/j.chemosphere.2023.138418
  12. Li J., van Ewijk G., van Dijken D.J., van der Gucht J., de Vos W. Single-step application of polyelectrolyte complex films as oxygen barrier coatings // ACS Appl. Mater. Interfaces. 2021. V. 13. № 18. P. 21844–21853. https://doi.org/10.1021/acsami.1c05031
  13. Panova I.G., Sybachin A.V., Spiridonov V.V., Kydralieva K., Jorobekova S., Zezin A.B., Yaroslavov A.A. Non-stoichiometric interpolyelectrolyte complexes: Promising candidates for protection of soils // Geoderma. 2017. V. 307. P. 91–97. https://doi.org/10.1016/j.geoderma.2017.08.001
  14. Chen M., Xu R., Wu Y., Xiong J., Keleş S.Z., Hankins N.P. Application of polyelectrolytes for contaminant removal and recovery during water and wastewater treatment: A critical review // J. Water Proc. Eng. 2024. V. 64. P. 105528. https://doi.org/10.1016/j.jwpe.2024.105528
  15. Zezin A.B., Mikheikin S.V., Rogacheva V.B., Zansokhova M.F., Sybachin A.V., Yaroslavov A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion // Adv. Colloid Interface Sci. 2015. V. 226. P. 17–23. https://doi.org/10.1016/j.cis.2015.06.006
  16. Akintola J., Chen Y., Digby Z.A., Schlenoff J.B. Antifouling coatings from glassy polyelectrolyte complex films // ACS Appl. Mater. Interfaces. 2023. V. 15. № 43. P. 50058–50068. https://doi.org/10.1021/acsami.3c11744
  17. Grigoriev D.O., Kohler K., Skorb E., Shchukin D.G., Mohwald H. Polyelectrolyte complexes as a ‘‘smart’’ depot for self-healing anticorrosion coatings // Soft Matter. 2009. V. 5. № 7. P. 1426–1432. https://doi.org/10.1039/B815147D
  18. Pigareva V.A., Senchikhin I.N., Bolshakova A.V., Sybachin A.V. Modification of polydiallyldimethylammonium chloride with sodium polystyrenesulfonate dramatically changes the resistance of polymer-based coatings towards wash-off from both hydrophilic and hydrophobic surfaces // Polymers. 2022. V. 14. № 6. P. 1247–1260. https://doi.org/10.3390/polym14061247
  19. Mkrtchyan K.V., Pigareva V.A., Zezina E.A., Kuznetsova O.A., Semenova A.A., Yushina Y.K., Tolordava E.R., Grudistova M.A., Sybachin A.V., Klimov D.I., Abramchuk S.S., Yaroslavov A.A., Zezin A.A. Preparation of biocidal nanocomposites in x-ray irradiated interpolyelectrolyte complexes of polyacrylic acid and polyethylenimine with Ag-ions // Polymers. 2022. V. 14. № 20. P. 4417. https://doi.org/10.3390/polym14204417
  20. Donath E., Sukhorukov G. B., Caruso F., Davis S.A., Möhwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes // Angew. Chem. Int. Ed. 1998. V. 37. № 16. P. 2201–2205. https://doi.org/10.1002/(SICI)1521-3773(19980904)37:16%3C2201::AID-ANIE2201%3E3.0.CO;2-E
  21. Pergushov D.V., Zezin A.A., Zezin A.B., Müller A.H.E. Advanced functional structures based on interpolyelectrolyte complexes // In: Müller M. (Ed.) Polyelectrolyte complexes in the dispersed and solid state I. Advances in polymer science. Berlin: Springer. 2013. V. 255. P. 129–160. https://doi.org/10.1007/12_2012_182
  22. Tirrell M. Polyelectrolyte complexes: Fluid or solid? // ACS Cent Sci. 2018. V. 4. № 5. P. 532–533. https://doi.org/10.1021/acscentsci.8b00284
  23. Kabanov V.A. Polyelectrolyte complexes in solution and in bulk // Russ. Chem. Rev. 2005. V. 74. № 1. P. 3–20. https://doi.org/10.1070/RC2005V074N01ABEH001165
  24. Mende M., Buchhammer H.M., Schwarz S., Petzold G., Jaeger W. The stability of polyelectrolyte complex systems of poly(diallydimethyl-ammonium chloride) with different polyanions // Macromol. Symp. 2004. V. 211. № 1. P. 121–133. https://doi.org/10.1002/masy.200450709
  25. Izumrudov V.A., Paraschuk V.V., Sybachin A.V. Controlled phase separations in solutions of polyelectrolyte complexes—Potential for gene delivery // J. Drug Delivery Sci. Technol. 2006. V. 16. № 4. P. 267–274. https://doi.org/10.1016/S1773-2247(06)50049-8
  26. Izumrudov V.A., Lim S.K. The effect of charge and length of a blocking polycation on phase separation in aqueous salt-containing solutions of nonstoichiometric polyelectrolyte complexes // Polym. Sci. Ser. B. 1998. V. 40. P. 459–465.
  27. Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Stability of interpolyelectrolyte complexes in aqueous saline solutions – effect of the degree of polymerization of polyions // Polym. Sci. Ser. B. 1995. V. 37. P. 1739–1746.
  28. Davydova O.V., Zelikin A.N., Kargov S.I., Izumrudov V.A. Conformation of polyelectrolyte chains in dilute aqueous solutions investigated by conductometry, 1. influence of the degree of polymerization on the conformation of flexible vinylic polyanions and rigid native DNA // Macromol. Chem. Phys. 2001. V. 202. № 8. P. 1361–1367. https://doi.org/10.1002/1521-3935(20010501)202:8%3C1361::AID-MACP1361%3E3.0.CO;2-N
  29. Zhang Y., Yildirim E., Antila H.S., Valenzuela L.D., Sammalkorpi M., Lutkenhaus J.L. The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes // Soft Matter. 2015. V. 11. № 37. P. 7392–7401. https://doi.org/10.1039/c5sm01184a
  30. Izumrudov V.A., Sybachin A.V. Phase separation in solutions of polyelectrolyte complexes: The decisive effect of a host polyion // Polym. Sci. Ser. A. 2006. V. 48. № 10. P. 1098–10104. https://doi.org/10.1134/S0965545X06100117
  31. Konyal E., Cengiz H.Y., Müftüler A., Deligöz H. Monitoring the salt stability and solvent swelling behavior of PAH-based polyelectrolyte multilayers by quartz crystal microbalance with dissipation // Polym. Eng. Sci. 2023. V. 63. № 10. P. 3328–3342. https://doi.org/10.1002/pen.26447
  32. Jha P.K., Desai P.S., Li J., Larson R.G. pH and salt effects on the associative phase separation of oppositely charged polyelectrolytes // Polymers. 2014. V. 6. № 5. P. 1414–1436. https://doi.org/10.3390/polym6051414
  33. Saikaew R., Meesorn W., Zoppe J.O., Weder C., Dubas S.T. Influence of the salt concentration on the properties of salt-free polyelectrolyte complex membranes // Macromol. Mater. Eng. 2019. V. 304. № 9. P. 1900245. https://doi.org/10.1002/mame.201900245
  34. Изумрудов B.A., Касаикин B.A, Ермакова Л.Н., Зезин А.Б. Исследование водорастворимых полиэлектролитных комплексов неэквимольного состава // Высокомол. coeд. 1978. Т. A20. №2. С. 400–406.
  35. Perry S.L., Li Y., Priftis D., Leon L., Tirrell M. The effect of salt on the complex coacervation of vinyl polyelectrolytes // Polymers. 2014. V. 6. № 6. P. 1756–1772. https://doi.org/10.3390/polym6061756
  36. Stevens M., Plimpton S. The effect of added salt on polyelectrolyte structure // Eur. Phys. J. B. 1998. V. 2. P. 341–345. https://doi.org/10.1007/s100510050257
  37. Carrillo J.M.Y., Dobrynin A.V. Polyelectrolytes in salt solutions: molecular dynamics simulations // Macromolecules. 2011. V. 44. № 14. P. 5798–5816. https://doi.org/10.1021/ma2007943
  38. Chituru S.V., Das S., Majumdar S. Impact of specific ion effects and electrostatic interactions on a polyelectrolyte-polyampholyte complex // Discov. Chem. Eng. 2024. V. 4. P. 6. https://doi.org/10.1007/s43938-024-00043-y
  39. Zelikin A.N., Litmanovich A.A., Paraschuk V.V., Sybatchin A.V., Izumrudov V.A. Conformational changes of aliphatic ionenes in water-salt solutions as a factor controlling stability of their complexes with calf thymus DNA // Macromolecules. 2003. V. 36. № 3. P. 2066–2071. https://doi.org/10.1021/ma021361x
  40. Pergushov D.V., Izumrudov V.A., Zezin A.B., Kabanov V.A. Effect of low-molecular-mass salts on the behaviour of water-soluble nonstoichiometric polyelectrolyte complexes // Poly. Sci. Ser. B. 1993. V. 35. № 7. P. 844–849.
  41. Izumrudov V.A., Kharenko O.A., Kharenko A.V., Gulyayeva Zh.G., Kasaikin V.A., Zezin A.B., Kabanov V.A. Behaviour of non-stoichiometric polyelectrolyte complexes in aqueous salt solutions // Polymer Science U.S.S.R. 1980. V. 22. P. 767–776.
  42. Digby Z.A., Yang M., Lteif S., Schlenoff J.B. Salt resistance as a measure of the strength of polyelectrolyte complexation // Macromolecules. 2022. V. 55. № 3. P. 978–988. https://doi.org/10.1021/acs.macromol.1c02151
  43. Boiko D.A., Kozlov K.S., Burykina J.V., Ilyushenkova V.V., Ananikov V.P. Fully automated unconstrained analysis of high-resolution mass spectrometry data with machine learning // J. Am. Chem. Soc. 2022. V. 144. № 32. P. 14590–14606. https://doi.org/10.1021/jacs.2c03631
  44. Shi Y.-F., Yang Z.-X., Ma S., Kang P.-L., Shang C., Hu P., Liu Z.-P. Machine learning for chemistry: basics and applications // Engineering. 2023. V. 27. P. 70–83. https://doi.org/10.1016/j.eng.2023.04.013
  45. LeCun Y., Bengio Y., Hinton G. Deep learning // Nature. 2015. V. 521. P. 436–444. https://doi.org/10.1038/nature14539
  46. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
  47. Dobbelaere M.R., Plehiers P.P., van de Vijver R., Stevens C.V., van Geem K.M. Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats // Engineering. 2021. V. 7. № 9. P. 1201–1211. https://doi.org/10.1016/j.eng.2021.03.019
  48. Zhou T., Song Z., Sundmacher K. Big Data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design // Engineering. 2019. V. 5. № 6. P. 1017–1026. https://doi.org/10.1016/j.eng.2019.02.011
  49. Chen W., Iyer A., Bostanabad R. Data centric design: a new approach to design of microstructural material systems // Engineering. 2022. V. 10. P. 89–98. https://doi.org/10.1016/j.eng.2021.05.022
  50. Delaney J.S. ESOL: Estimating aqueous solubility directly from molecular structure // J. Chem. Inf. Comput. Sci. 2004. V. 44. № 3. P. 1000–1005. https://doi.org/10.1021/ci034243x
  51. Thebelt A., Wiebe J., Kronqvist J., Tsay C., Misener R. Maximizing information from chemical engineering data sets: Applications to machine learning // Chem. Eng. Sci. 2022. V. 252. P. 117469. https://doi.org/10.1016/j.ces.2022.117469
  52. Keith J.A., Vassilev-Galindo V., Cheng B., Chmiela S., Gastegger M., Müller K.-R., Tkatchenko A. Combining machine learning and computational chemistry for predictive insights into chemical systems // Chem. Rev. 2021. V. 121. № 16. P. 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107
  53. Lengauer T., Sander O., Sierra S., Thielen A., Kaiser R. Bioinformatics prediction of HIV coreceptor usage // Nature Biotechnology. 2007. V. 25. P. 1407–1410. https://doi.org/10.1038/nbt1371
  54. Senior A.W., Evans R., Jumper J., Kirkpatrick J., Sifre L., Green T., Qin C., Žídek A., Nelson A.W., Bridgland A., et al. Improved protein structure prediction using potentials from deep learning // Nature. 2020. V. 577. P. 706–710. https://doi.org/10.1038/s41586-019-1923-7
  55. Tkatchenko A. Machine learning for chemical discovery // Nature Communications. 2020. V. 11. P. 4125. https://doi.org/10.1038/s41467-020-17844-8
  56. Coe J. P. Machine learning configuration interaction // J. Chem. Theory Comput. 2018. V. 14. № 11. P. 5739–5749. https://doi.org/10.1021/acs.jctc.8b00849
  57. Zaspel P., Huang B., Harbrecht H., von Lilienfeld O.A. Boosting quantum machine learning models with a multilevel combination technique: Pople diagrams revisited // J. Chem. Theory Comput. 2019. V. 15. № 3. P. 1546–1559. https://doi.org/10.48550/arXiv.1808.02799
  58. Snyder J. C., Rupp M., Hansen K., Blooston L., Müller K.-R., Burke K. Orbital-free bond breaking via machine learning // J. Chem. Phys. 2013. V. 139. P. 224104. https://doi.org/10.1063/1.4834075
  59. Snyder J.C., Rupp M., Hansen K., Müller K.-R., Burke K. Finding density functionals with machine learning // Phys. Rev. Lett. 2012. V. 108. P. 253002. https://doi.org/10.1103/PhysRevLett.108.253002
  60. Bogojeski M., Vogt-Maranto L., Tuckerman M. E., Müller K.-R., Burke K. Quantum chemical accuracy from density functional approximations via machine learning // Nat. Commun. 2020. V. 11. P. 5223. https://doi.org/10.1038/s41467-020-19093-1
  61. de la Torre J. G., Hern J.G., Lopez Martinez M.C. Prediction of solution properties of flexible-chain polymers // Eur. J. Phys. 2008. V. 29. P. 945–956. https://doi.org/10.1088/0143-0807/29/5/008
  62. Gribova V., Navalikhina A., Lysenko O., Calligaro C., Lebaudy E., Deiber L., Senger B., Lavalle P., Vrana N.E. Prediction of coating thickness for polyelectrolyte multilayers via machine learning // Sci Rep. 2021. V. 11. P. 18702. https://doi.org/10.1038/s41598-021-98170-x
  63. Dral P. O., von Lilienfeld O. A., Thiel W. Machine learning of parameters for accurate semiempirical quantum chemical calculations // J. Chem. Theory Comput. 2015. V. 11. № 5. P. 2120–2125. https://doi.org/10.1021/acs.jctc.5b00141
  64. Kuenneth C., Ramprasad R. polyBERT: A chemical language model to enable fully machine-driven ultrafast polymer informatics // Nature Communications. 2023. V. 14. P. 4099. https://doi.org/10.21203/rs.3.rs-2116998/v1
  65. Pigareva V.A., Bolshakova A.V., Marina V.I., Sybachin A.V. Water-soluble interpolyelectrolyte complex based on poly(diallyldimethylammonium chloride) and sodium polyacrylate as a component for creating stable biocidal coatings // Colloid Journal. 2023. V. 85. P. 433–441. https://doi.org/10.1134/S1061933X23600100
  66. Dautzenberg H., Karibyants N. Polyelectrolyte complex formation in highly aggregating systems: Effect of salt – response to subsequent addition of NaCl // Macromolecular Chemistry and Physics. 1999. V. 200. P. 118–125. https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1%3C118::AID-MACP118%3E3.0.CO;2-K
  67. G ulyaeva Z.G., Aldoshina I.V., Zansokhova M.F., Rogacheva V.B., Zezin A.B., Kabanov V.A. Phase separation in water-salt solutions of polyelectrolyte complexes // Polymer Science U.S.S.R. 1990. V. 32. P. 714–722.
  68. Jukić J., Korade K., Milisav A.-M., Marion I.D., Kovačević D. Ion-specific and solvent effects on PDADMA–PSS complexation and multilayer formation // Colloids and Interfaces. 2021. V. 5. № 3. P. 38. https://doi.org/10.3390/colloids5030038

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (229KB)
3. Fig. 1

Download (87KB)
4. Fig. 1. Schematic of IPECs formed by pairs of LPE and BPE with different ratios of polymerisation degrees. The LPE chain length is greater than the BPE chain length (a), the LPE chain length is commensurate with the BPE chain length (b), the LPE chain length is less than the BPE chain length (c), and the LPE chain length is much less than the BPE chain length (d). Reproduced from the article [30] with the permission of the copyright holder.

Download (169KB)
5. Fig. 2. Schematic diagram of the control model.

Download (155KB)
6. Fig. 3. Schematic diagram of the IPECnet model.

Download (129KB)
7. Fig. 4. Values of AUC, F1-score, and Accuracy metrics for the Control Model and IPECnet.

Download (153KB)

Copyright (c) 2025 Russian Academy of Sciences