Photochemical oxidation of water catalyzed by a cobalt (II) tetra-nuclear complex with polyoxovolphramophosphate ligands and lithium antications in artificial photosynthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Lithium salt of cobalt tetra-nuclear complex was synthesized and characterized by physicochemical methods Li10[Co4(H2O)2(α-PW9O34)2] 24H2O (1) – active homogeneous catalyst for the reaction of water oxidation with the formation of О2. ESI – mass spectrometric method shows the presence in the mass spectrum of the maximum peak with m/z = 1182.611 corresponding to the ion [Co4(PW9O34)HLi5]4– which forms a sandwich-type structure. Measurements of temperature-dependent magnetic susceptibility showed the predominance of antiferromagnetic interaction in the complex 1. The photochemical oxidation reaction of water under visible light irradiation in the presence of electron acceptor was studied Na2S2O8, photosensitizer bpy3RuCl2 and the catalyst. Efficiency of the catalytic system under optimal reaction conditions (рН 8, [1] = 5 μM), catalyst turnover number TON = 330, quantum yield of photogenerated oxygen (F = 0.46) is higher than that of the sodium salt of a similar catalyst (TON = 220, F = 0.27).

About the authors

Z. M. Dzhabieva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Author for correspondence.
Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

V. Yu. Ilyaschenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

T. A. Savinykh

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

A. I. Dmitriev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Zhidkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

Yu. M. Baskakova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

T. S. Dzhabiev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS

Email: dzhabiev@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Джабиев Т.С., Шилов А.Е. // Успехи химии. 2012. Т. 81. № 12. С. 1146.
  2. Kärkäs M.D., Verho O., Jonston E.V., Åkermark B. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572
  3. Hurst J.K. // Science. 2010. V. 328. P. 315. https://doi.org/10.1126/science.1187721
  4. Yagi M., Kaneko M. // Chem. Rev. 2001. V. 101. P. 21. https://doi.org/10.1021/cr9801081
  5. Sens C., Romero I., Rodriguez M. et al. // J. Am. Chem.Soc. 2004. V. 126. P. 7798. https://doi.org/10.1021/ja0486824
  6. Suess-Fink G. // Angew. Chem. Int. Ed. 2008. V. 47. P. 5888. https://doi.org/10.1002/anie.200801121
  7. Gersten S.W., Samuels G.J., Meyer T.J. // J. Am. Chem. Soc. 1982. V. 104. P. 4029. https://doi.org/10.1021/ja00378a053
  8. Geletii Y. V., Botar B., Kogerler P. et. al // Angew. Chem. Int. Ed. 2008. V. 47. № 21. P. 3847. https://doi.org/10.1002/anie.200705652
  9. Sartorel A.; Carraro M.; Scorrano G. et al // J. Am. Chem. Soc. 2008. V. 130. P. 5006. https://doi.org/10.1021/ja0778371
  10. Geletii Y.V., Huang Z., Hou Y. et al // J. Am. Chem. Soc. 2009. V. 131. P. 7522. https://doi.org/10.1021/ja901373m
  11. Toma F. M.; Sartorel A.; Iurlo M. et al. //. Nat. Chem. 2010. V. 2. P. 826.
  12. Besson C., Huang Z., Geletii Y.V. et al. // Chem. Commun. 2010. V. 46. P. 2784. https://doi.org/10.1039/B926064A
  13. Murakami M., Hong D., Suenobu T. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 11605.
  14. Zhu G., Geletii Y.V., Kogerler P. et al. // Dalton Trans. 2012. V. 41. P. 2084.
  15. Lv H., Geletii Y.V., Zhao C. et al. // Chem. Soc. Rev. 2012. V. 41. P. 7572.
  16. Sartorel A., Bonchio M., Campagna. S., Scandola, F. // Chem. Soc. Rev. 2014. V. 42. P. 2262. https://doi.org/10.1039/c2cs35287g
  17. Vickers J.W., Lv H., Sumliner J.M. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 14110. https://doi.org/10.1021/ja4024868
  18. Sumliner J.M., Lv H., Fielden J. et al. // Eur. J. Inorg. Chem. 2014. V. 635.
  19. Vickers J.W., Sumliner J.M., Lv H. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 11942.
  20. Han X.-B., Zhang Z.-M., Zhang T. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 5359.
  21. Шматко Н.Ю., Джабиева З.М. Химическое моделирование фермента, окисляющего воду в фотосистеме II. Фотокаталитические преобразователи солнечной энергии в энергию химических топлив. LAP LAMBERT Academic Publishing. Saarbrucken, Deutschland, 2012. 76 с. ISBN: 978-3-659-29482-2.
  22. Джабиева З.М., Ткаченко В.Ю., Джабиев Т.С. // Химия высоких энергий. 2017. Т. 51. № 3. С. 230; https://doi.org/10.7868/S0023119317030056
  23. Dzhabieva Z.M., Shilov G.V., Avdeeva L.V. et al. // Russian Journal of Inorganic Chemystry. 2024. P. 1. https://doi.org/10.1134/S0036023624601004
  24. Bi L.H., Huang R.D., Peng J. et al. // J. Chem. Soc. Dalton Trans. 2011. V. 121.
  25. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир. 1966. 411 с.
  26. Hatchard C.G., Parker C.A. // Proc. Roy Soc. London. 1956. V. A235. № 1203. P. 518.
  27. Yin Q., Tan J.M., Besson C. et al // Science. 2010. V. 328. P. 342.
  28. Bao Li, Yi Yan, Fengyan Li et al. // Inorganica Chimica Acta. 2009. V. 362. P. 2796.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences