Impact of metal nanoparticles on the ecology of aquatic biocenosis and microbial communities (Review)
- Authors: Sosedova L.M.1, Titov E.A.1, Novikov M.A.1, Shurygina I.A.2, Shurygin M.G.2
-
Affiliations:
- East-Siberian Institute of Medical and Ecological Research
- Irkutsk Scientific Center of Surgery and Traumatology
- Issue: Vol 100, No 1 (2021)
- Pages: 30-35
- Section: ENVIRONMENTAL HYGIENE
- Published: 08.02.2021
- URL: https://archivog.com/0016-9900/article/view/639531
- DOI: https://doi.org/10.47470/0016-9900-2021-100-1-30-35
- ID: 639531
Cite item
Full Text
Abstract
Keywords
About the authors
Larisa M. Sosedova
East-Siberian Institute of Medical and Ecological Research
Author for correspondence.
Email: sosedlar@mail.ru
ORCID iD: 0000-0003-1052-4601
MD, Ph.D., DSci., Professor, Head of Laboratory of biomodeling and translational medicine of the East-Siberian Institute of Medical and Ecological Research, Angarsk, 665827, Russian Federation.
e-mail: sosedlar@mail.ru
Russian FederationEvgeniy A. Titov
East-Siberian Institute of Medical and Ecological Research
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0665-8060
Russian Federation
Mikhail A. Novikov
East-Siberian Institute of Medical and Ecological Research
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6100-6292
Russian Federation
Irina A. Shurygina
Irkutsk Scientific Center of Surgery and Traumatology
Email: noemail@neicon.ru
ORCID iD: 0000-0003-3980-050X
Russian Federation
Mikhail G. Shurygin
Irkutsk Scientific Center of Surgery and Traumatology
Email: noemail@neicon.ru
ORCID iD: 0000-0001-5921-0318
Russian Federation
References
- Thomas C.R., George S., Horst A.M., Ji Z., Miller R.J., Peralta-Videa J.R., et al. Nanomaterials in the environment: From materials to high-throughput screening to organisms. ACS Nano. 2011; 5(1): 13-20. https://doi.org/10.1021/nn1034857
- Holden P.A., Nisbet R.M., Lenihan H.S., Miller R.J., Cherr G.N., Schimel J.P., et al. Ecological nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc. Chem. Res. 2012; 46(3): 813-22. https://doi.org/10.1021/ar300069t
- Kahru A., Savolainen K. Potential hazard of nanoparticles: from properties to biological and environmental effects. Toxicology. 2010; 269(2-3): 89-91. https://doi.org/10.1016/j.tox.2010.02.012
- Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miaoet J., et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008; 17(5): 372-86. https://doi.org/10.1007/s10646-008-0214-0
- Wiesner M.R., Lowry G.V., Alvarez P., Dionysiou D., Biswas P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006; 40(14): 4336-45. https://doi.org/10.1021/es062726m
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
- Clément L., Hurel C., Marmier N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. Chemosphere. 2013; 90(3): 1083-90. https://doi.org/10.1016/j.chemosphere.2012.09.013
- Damoiseaux R., George S., Li M., Pokhrel S., Ji Z., France B., et al. No time to lose - high throughput screening to assess nanomaterial safety. Nanoscale. 2011; 3(4): 1345-60. https://doi.org/10.1039/c0nr00618a
- Nel A., Xia T., Meng H., Wang X., Lin S., Ji Z., et al. Nanomaterial toxicity testing in the 21st century: Use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2012; 46(3): 607-21. https://doi.org/10.1021/ar300022h
- Cupi D., Hartmann N.B., Baun A. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol. Environ. Saf. 2016; 127: 144-52. https://doi.org/10.1016/j.ecoenv.2015.12.028
- Gonzalez-Sanchez M.I., González-Macia L., Pérez-Prior M.T., Valero E., Hancock J., Killard A.J. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: a real-time marker of oxidative stress. Plant Cell Environ. 2013; 36(4): 869-78. https://doi.org/10.1111/pce.12023
- Puerari R.C., da Costa C.H., Vicentina D.S., Fuzinatto C.F., Melegari S.P., Schmid É.C., et al. Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri. Ecotoxicol. Environ. Saf. 2016; 128: 36-43. https://doi.org/10.1016/j.ecoenv.2016.02.011
- Kennedy A.J., Coleman J.G., Diamond S.A., Melby N.L., Bednar J., Harmon A., et al. Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution. Nanotoxicology. 2017; 11(4): 546-57. https://doi.org/10.1080/17435390.2017.1317863
- Tomacheski D., Pitto M., Simõe D.N., Ferreira R.V. Effects of silver adsorbed on fumed silica, silver phosphate glass, bentonite organomodified with silver and titanium dioxide in aquatic indicator organisms. J. Environ. Sci. (China). 2017; 56: 230-9. https://doi.org/10.1016/j.jes.2016.07.018
- Salieri B., Righi S., Pasteris A., Olsen S.I. Freshwater ecotoxicity characterisation factor for metal oxide nanoparticles: A case study on titanium dioxide nanoparticle. Sci. Total Environ. 2015; 505: 494-502. https://doi.org/10.1016/j.scitotenv.2014.09.107
- Maness P., Smolinski S., Blake D.M., Huang Z., Wolfrum E.J., Jacoby W.A., et al. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 2009; 65(9): 4094-8. https://doi.org/10.1128/aem.65.9.4094-4098.1999
- Yang H., Mei S., Zhao L., Zhang Y. Effects of ultraviolet irradiation on the antibacterial activity of TiO2 nanotubes. Nanosci. Nanotechnol. Lett. 2016; 8(6): 498-504. https://doi.org/10.1166/nnl.2016.2135
- Zhang W., Li Y., Niu J., Chen Y. Photogeneration of reactive oxygen species on uncoatedsilver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013; 29(15): 4647-51. https://doi.org/10.1021/la400500t
- Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013; 87(7): 1181-200. https://doi.org/10.1007/s00204-013-1079-4
- Santschi C., Von Moos N., Koman V.B., Slaveykova V., Bowen P., Martin O.J.F. Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. J. Nanobiotechnol. 2017; 15(1): 19. https://doi.org/10.1186/s12951-017-0253-x
- Wang D., Zhao L.X., Ma H.Y., Zhang H., Guo L.H.H. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: the role of superoxide radicals. Environ. Sci. Technol. 2017; 51(17): 10137-45. https://doi.org/10.1021/acs.est.7b00473
- González-Sánchez M.I., González-Macia L., Pérez-Prior M.T., Valero E., Hancock J., Killard A.J. Electrochemical detection of extracellular hydrogen peroxide in Arabidopsis thaliana: A real-time marker of oxidative stress. Plant Cell Environ. 2013; 36(4): 869-78. https://doi.org/10.1111/pce.12023
- Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113(7): 823-39. https://doi.org/10.1289/ehp.7339
- Cao H., Meng F., Liu X. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. J. Vac. Sci. Technol. 2016; 34(04): 102. https://doi.org/10.1116/1.4947077
- Mi F.L., Wu Y.B., Shyu S.S., Schoung J.Y., Huang Y.B., Tsai Y.H., et al. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J. Biomed. Mater. Res. 2002; 59(3): 438-49. https://doi.org/10.1002/jbm.1260
- Mosselhy D.A., El-Aziz M.A., Hanna M., Ahmed M.A., Husien M.M., Feng Q.L. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate. J. Nanopart. Res. 2015; 17: 473. https://doi.org/10.1007/s11051-015-3279-8
- Liu X., Gan K., Liu H., Song X., Chen T., Liu C. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent. Mater. 2017; 33(9): e348-e360. https://doi.org/10.1016/j.dental.2017.06.014
- Sanchís J., Olmos M., Vincent P., Farré M., Barceló D. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ. Sci. Technol. 2016; 50(2): 961-9. https://doi.org/10.1021/acs.est.5b03966
- Tong T., Wilke C.M., Wu J., Binh C.T., Kelly J.J., Gaillard J.F., et al. Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ. Sci. Technol. 2015; 49(13): 8113-23. https://doi.org/10.1021/acs.est.5b02148
- Ye N., Wang Z., Fang H., Wang S., Zhang F. Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus. J. Environ. Sci. Health. 2017; 52(6): 555-60. https://doi.org/10.1080/10934529.2017.1284434
- Shang E., Li Y., Niu J., Guo H., Zhou Y., Liu H., et al. Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli. Ecotoxicol. Environ. Saf. 2015; 122: 238-44. https://doi.org/10.1016/j.ecoenv.2015.08.002
- Zhou C., Vitiello V., Pellegrini D., Wu C., Morelli E., Buttino I. Toxicological effects of CdSe/ZnS quantum dots on marine planktonic organisms. Ecotoxicol. Environ. Saf. 2016; 123: 26-31. https://doi.org/10.1016/j.ecoenv.2015.09.020
- Pakrashi S., Dalai S., Sabat D., Singh S., Chandrasekaran N., Mukherjee A. Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem. Res. Toxicol. 2011; 24: 1899-04.
- Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 2011; 51(10): 1872-81. https://doi.org/10.1016/j.freeradbiomed.2011.08.025
- Tong T., Binh C.T.T., Kelly J.J., Gaillard J.F., Gray K.A. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Res. 2013; 47(7): 2352-62. https://doi.org/10.1016/j.watres.2013.02.008
- Jin X., Li M., Wang J., Marambio-Jones C., Peng F., Huang X., et al. High-throughput screening of silver nanopartice stability and bacterial inactivation in aquatic media; Influence of specific ions. Environ. Sci. Technol. 2010; 44(19): 7321-8. https://doi.org/10.1021/es100854g
- Binh C.T.T., Tong T., Gaillard J.F., Gray K.A., Kelly J.J. Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ. Toxicol. Chem. 2014; 33(2): 317-27. https://doi.org/10.1002/etc.2442
- Binh C.T.T., Tong T., Gaillard J.F., Gray K.A., Kelly J.J. Acute effects of TiO2 nanomaterials on the viability and taxonomic composition of aquatic bacterial communities assessed via high-throughput screening and next generation sequencing. PLoS One. 2014; 9(8): e106280. https://doi.org/10.1371/journal.pone.0106280
- von Moos N., Maillard L., Slaveykova V.I. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat. Toxicol. 2015; 161: 267-75. https://doi.org/10.1016/j.aquatox.2015.02.010
- Aravantinou A.F., Tsarpali V., Dailianis S., Manariotis I.D. Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol. Environ. Saf. 2015; 114: 109-16. https://doi.org/10.1016/j.ecoenv.2015.01.016
- Manier N., Bado-Nilles A., Delalain P., Aguerre-Chariol O., Pandard P. Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 2013; 180: 63-70. https://doi.org/10.1016/j.envpol.2013.04.040
- Polonini H.C., Brandão H.M., Raposo N.R., Brandão M.A.F., Mouton L., Couté A., et al. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology. 2015; 24(4): 938-48. https://doi.org/10.1007/s10646-015-1436-6
- Morellia E., Gabellieria E., Bonominia A., Tognottia D., Grassib G., Corsi I. TiO2 nanoparticles in seawater: Aggregation and interactions with the green alga Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2018; 148: 184-93. https://doi.org/10.1016/j.ecoenv.2017.10.024
- Callegaro S., Minetto D., Pojana G., Bilanicová D., Libralato G., Ghirardini A.V. Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater. Ecotoxicol. Environ. Saf. 2015; 117: 107-14. https://doi.org/10.1016/j.ecoenv.2015.03.030
- Shirazi A., Shariati M., Keshavarz A., Ramezanpour Z. Toxic effect of aluminium oxide nanoparticles on green micro-algae Dunaliella salina. Int. J. Environ. Res. 2015; 9(2): 585-94.
- Gao M., Zhang Z., Lv M., Song W., Lv Y. Toxic effects of nanomaterial-adsorbed cadmium on Daphnia magna. Ecotoxicol. Environ. Saf. 2018; 148: 261-8. https://doi.org/10.1016/j.ecoenv.2017.10.038
- Semerád J., Cajthaml T. Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Appl. Microbiol. Biotechnol. 2016; 100(23): 9809-19. https://doi.org/10.1007/s00253-016-7901-1
- Cullen L.G., Tilston E.L., Mitchell G.R., Collins C.D., Shaw L.J. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere. 2011; 82(11): 1675-82. https://doi.org/10.1016/ j.2010.11.009
- Tesh S.J., Scott T.B. Nano-composites for water remediation: a review. Adv. Mater. 2014; 26(35): 6056-68. https://doi.org/10.1002/adma.201401376
- Barrera-Díaz C.E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard Mater. 2012; 223-224: 1-12. https://doi.org/10.1016/j.jhazmat.2012.04.054
- Pádrová K., Čejková A., Cajthaml T., Kolouchová I., Vítová M., Sigler K., et al. Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiol. (Praha) 2016; 61(4): 329-35. https://doi.org/10.1007/s12223-015-0442-7
- Jang M.H., Lim M., Hwang Y.S. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ. Health. Toxicol. 2014; 29: e2014022. https://doi.org/10.5620/eht.e2014022
- Mitrano D.M., Motellier S., Clavaguera S., Nowack B. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 2015; 77: 132-47. https://doi.org/10.1016/j.envint.2015.01.013
- Darwish A.D. Fullerenes. Ann. Rep. Sect. A. Inorg. Chem. 2013; 109: 436-52.
- Burakov A., Romantsova I., Kucherova A., Tkachev A. Removal of heavy-metal ions from aqueous solutions using activated carbons: effect of adsorbent surface modification with carbon nanotubes. Adsorpt. Sci. Technol. 2014; 32(9): 737-47. https://doi.org/10.1260/0263-6174.32.9.737
- Melezhyk A.V., Kotov V.A., Tkachev A.G. Optical properties and aggregation of graphene nanoplatelets. J. Nanosci. Nanotechnol. 2016; 16(1): 1067-75. https://doi.org/10.1166/jnn.2016.10496
- Nogueira V., Lopes I., Rocha-Santos T.A.P., Rasteiro M.G., Abrantes N., Gonçalves F., et al. Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environ. Sci. Pollut. Res. 2015; 22(17): 13212-24. https://doi.org/10.1007/s11356-015-4581-9
- Burakov A.E., Galunin E.V., Burakova I.V., Kucherova A.E, Agarwal S., Tkachev A.G., et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018; 148: 702-12. https://doi.org/10.1016/j.ecoenv.2017.11.034
- Nogueira V., Lopes I., Rocha-Santos T., Santos A.L., Rasteiro G.M., Antunes F., et al. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 2012; 424: 344-50. https://doi.org/10.1016/j.scitotenv.2012.02.041
Supplementary files
