Assessment of the annual trend of chemical aerogenic risk to health and mortality of the population at an industrial center

封面

如何引用文章

全文:

详细

Introduction. Ambient air pollution determines high levels of risk to public health, causing excess mortality.

The purpose of the study is to analyze the dependence of the seasonal dynamics of pollutants and mortality from major non-infectious diseases in the population of the industrial center of Eastern Siberia.

Materials and methods. Air pollution in Bratsk was assessed based on data from monitoring systems for 2017–2022, taking into account one-time, average monthly and annual concentrations. Hazard indices and mortality rates (MR) from major causes were calculated. The annual trend in indicators are assessed using seasonality indices (SI).

Results. Features of the seasonal dynamics of pollutants were revealed: maximum fluctuations in SI are characteristic of benzo(a)pyrene (22% in the warm season, 214% in the cold season), formaldehyde (219 and 65%, respectively). The SI for mortality had significant fluctuations throughout the year and varied across age groups and disease classes. Changes in seasonality have been noted during the COVID-19 pandemic. Average monthly MR in the older group is associated with concentrations of PM2.5, formaldehyde, NO2.

Limitations of the study are related to the limited data on monitoring pollutants, inevitable errors in conditional division into seasons, and the impossibility of accurately determining the cause of death during a pandemic.

Conclusion. The use of average monthly data on MR values and pollutant concentrations confirms the dependence of population mortality on air pollution when studying this phenomenon in medium-sized cities with high levels of hazard indices.

Compliance with ethical standards. The study does not require submission of the opinion of the biomedical ethics committee or other documents.

Contributions:
Efimova N.V. — the concept and design of the study, writing the text, editing;
Kuzmina M.V. — collection of material and data processing, editing;
Bobkova E.V. — collection of material and data processing, editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version

Conflict of interest. The authors declare no conflict of interest.

Acknowledgement. The study was carried out within the framework of the state assignment of East-Siberian Institute of Medical and Ecological Research, the Centre Hygiene and Epidemiology in the Irkutsk region.

Received: October 9, 2023 / Accepted: November 15, 2023 / Published: December 28, 2023

作者简介

Natalia Efimova

East-Siberian Institute of Medical and Ecological Research; Center for Hygiene and Epidemiology in the Irkutsk Region

编辑信件的主要联系方式.
Email: medecolab@inbox.ru
ORCID iD: 0000-0001-7218-2147

MD, PhD, DSci., Professor, Leading Researcher, Laboratory of environmental and hygienic research East-Siberian Institute of Medical and Ecological Research, 665827, Angarsk, Russian Federation

e-mail: medecolab@inbox.ru

俄罗斯联邦

Marina Kuzmina

Center for Hygiene and Epidemiology in the Irkutsk Region

Email: sgmirkutsk@mail.ru
ORCID iD: 0000-0002-5723-839X

Руководитель отдела санитарно-эпидемиологических экспертиз ФБУЗ «Центр гигиены и эпидемиологии в Иркутской области», 664047, Иркутск

e-mail: sgmirkutsk@mail.ru

俄罗斯联邦

Elena Bobkova

East-Siberian Institute of Medical and Ecological Research; Medical Information and Analytical Center of the Irkutsk Region

Email: evb@miac-io.ru
ORCID iD: 0000-0001-8914-7903

Заместитель директора по медицинской статистике ОГКУЗ «Медицинский информационно-аналитический центр Иркутской области», 664003, Иркутск

e-mail: evb@miac-io.ru

俄罗斯联邦

参考

  1. Revich B.A. How effective is “Clean air for health in 12 cities” project? Ekologicheskiy vestnik Rossii. 2020; (3): 58–68. https://elibrary.ru/owuyog (in Russian)
  2. Zaytseva N.V., May I.V. Ambient air quality and health risks as objective indicators to estimate effectiveness of air protection in cities included into the «Clean air» Federal project. Analiz riska zdorov’yu. 2023; (1): 4–12. https://doi.org/10.21668/health.risk/2023.1.01 https://elibrary.ru/omvwle (in Russian)
  3. Bezuglaya E.Yu., Berlyand M.E., eds. Climatic Characteristics of the Conditions for the Distribution of Impurities in the Atmosphere. Reference Manual [Klimaticheskie kharakteristiki usloviy rasprostraneniya primesey v atmosfere. Spravochnoe posobie]. Leningrad: Gidrometeoizdat; 1983. (in Russian)
  4. Bezgodov I.V., Efimova N.V., Kuz’mina M.V., Myl’nikova I.V. Ranking and assessment of Irkutsk region by level of complex anthropogenic pollution. Zdorov’e naseleniya i sreda obitaniya – ZNiSO. 2017; (2): 38–40. https://doi.org/10.35627/2219-5238/2017-287-2-38-40 https://elibrary.ru/xxrfpl (in Russian)
  5. Zemlyanova M.A., Perezhogin A.N., Kol’dibekova Yu.V. Trends detected in children’s health and their relation with basic aerogenic risk factors under exposure to specific ambient air contamination caused by metallurgic and wood-processing enterprises. Analiz riska zdorov’yu. 2020; (4): 47–54. https://doi.org/10.21668/health.risk/2020.4.05.eng https://elibrary.ru/dmzzzp
  6. Efimova N.V., Rukavishnikov V.S. Assessment of air pollution based on the analysis of long-term observations in the city of Bratsk. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2022; 101(9): 998–1003. https://doi.org/10.47470/0016-9900-2022-101-9-998-1003 https://elibrary.ru/aaoibc (in Russian)
  7. May I.V., Zagorodnov S.Yu. Ecological forecasting of industrial dust emissions: problems and solutions. Ekologiya i promyshlennost’ Rossii. 2021; 25(7): 42–7. https://doi.org/10.18412/1816-0395-2021-7-42-47 https://elibrary.ru/puzthp (in Russian)
  8. Health Effects Institute. State of Global Air – 2020. Special Report. Boston, MA; 2020. Available at: https://www.stateofglobalair.org/sites/default/files/documents/2020-10/soga-2020-report.pdf
  9. Veremchuk L.V., Tsarouhas K., Vitkina T.I., Mineeva E.E., Gvozdenko T.A., Antonyuk M.V., et al. Impact evaluation of environmental factors on respiratory function of asthma patients living in urban territory. Environ. Pollut. 2018; 235: 489–96. https://doi.org/10.1016/j.envpol.2017.12.122
  10. Johnston F.H., Salimi F., Williamson G.J., Henderson S.B., Yao J., Dennekamp M., et al. Ambient particulate matter and paramedic assessments of acute diabetic, cardiovascular, and respiratory conditions. Epidemiology. 2019; 30(1): 11–9. https://doi.org/10.1097/ede.0000000000000929
  11. Raz-Maman C., Carel R.S., Borochov-Greenberg N., Zack O., Portnov B.A. The exposure assessment period to air pollutants which affects lung function: analysis of recent studies and an explanatory model. Air Quality, Atmosphere & Health. 2021; 15(3): 393–402. https://doi.org/10.1007/ s11869-021-01128-1
  12. Lelieveld J., Pozzer A., Pöschl U., Fnais M., Haines A., Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc. Res. 2020; 116(11): 1910–7. https://doi.org/10.1093/cvr/cvaa025
  13. Tan T., Hu M., Li M., Guo Q., Wu Y., Fang X., et al. New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Sci. Total. Environ. 2018; 621: 734–43. https://doi.org/10.1016/j.scitotenv.2017.11.208
  14. Savilov E.D., Astaf’ev V.A., Zhdanova C.N., Zarudnev E.A. Epidemiological Analysis: Methods of Statistical Processing of Material [Epidemiologicheskiy analiz: Metody statisticheskoy obrabotki materiala]. Novosibirsk: Nauka-Tsentr; 2011. (in Russian)
  15. Gerasimov A.N. Medical statistics. M.: MIA; 2007: 261–71.
  16. Korunov A.O., Khalikov I.S., Surnin V.A. Seasonal variation and territorial distribution of the content of benzo(a)pyrene in the atmospheric air of the Russian Federation. Ekologicheskaya khimiya. 2020; 29(5): 270–82. https://elibrary.ru/gzpwxn (in Russian)
  17. Gurvich V.B., Kozlovskikh D.N., Vlasov I.A., Chistyakova I.V., Yarushin S.V., Kornilkov A.S. et al. Methodological approaches to optimizing ambient air quality monitoring programs within the framework of the Federal Clean Air Project (on the example of Nizhny Tagil). Zdorov’e Naseleniya i Sreda Obitaniya – ZNiSO (Public Health and Life Environment – PH&LE). 2020; 9: 38–47. https://doi.org/10.35627/2219- 5238/2020-330-9-38-47 (in Russian)
  18. Vekovshinina S.A., Kleyn S.V., Zhdanova-Zaplesvichko I.G., Chetverkina K.V. The quality of environment and risk to health of the population residing under the exposure to emissions from colored metallurgy enterprises and wood processing industry. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2018; 97(1): 16–20. https://doi.org/10.18821/0016-9900-2018-97-1-16-20 https://elibrary.ru/tizemb (in Russian)
  19. Romanello M., McGushin A., Di Napoli C., Drummond P., Hughes N., Jamart L., et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet. 2021; 398(10311): 1619–62. https://doi.org/10.1016/s0140-6736(21)01787-6
  20. Sarovar V., Malig B.J., Basu R. A case-crossover study of short-term air pollution exposure and the risk of stillbirth in California, 1999–2009. Environ. Res. 2020; 191: 110103. https://doi.org/10.1016/j.envres.2020.110103
  21. Zaytseva N.V., May I.V. Main results, prospects of application and improvement of the health risk assessment of the population of Siberian cities-participants of the «Clean air» project (Bratsk, Norilsk, Krasnoyarsk, Chita). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(5): 519–27. https://doi.org/10.47470/0016-9900-2021-100-5-519-527 https://elibrary.ru/ogjjxt (in Russian)
  22. Efimova N.V., Rukavishnikov V.S. Assessment of smoke pollution caused by wildfires in the Baikal Region (Russia). Atmosphere. 2021; 12(12): 1542. https://doi.org/10.3390/atmos12121542
  23. Romanov A.A., Tamarovskaya A.N., Gusev B.A., Leonenko E.V., Vasiliev A.S., Krikunov E.E. Catastrophic PM2.5 emissions from Siberian forest fires: Impacting factors analysis. Environ. Pollut. 2022; 306: 119324. https://doi.org/10.1016/j.envpol.2022.119324
  24. Grigor’eva E.A., Glagolev V.A. Intra-annual dynamics of mortality rates in cities of the southern part of the Russian Far East. Regional’nye problemy. 2021; 24(2–3): 11–8. https://doi.org/10.31433/2618-9593-2021-24-2-3-11-18 https://elibrary.ru/wpmyna (in Russian)
  25. Lepeule J., Litonjua A.A., Gasparrini A., Koutrakis P., Sparrow D., Vokonas P.S., et al. Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly. Environ. Res. 2018; 165: 110–7. https://doi.org/10.1016/j.envres.2018.03.039
  26. Sun S., Laden F., Hart J.E., Qiu H., Wang Y., Wong C.M., et al. Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study. Thorax. 2018; 73(10): 951–8. https://doi.org/10.1136/thoraxjnl-2017-211333
  27. Saltykova M.M., Shopina O.V., Balakaeva A.V., Bobrovnitskiy I.P. Air pollution as a reason of increased mortality of the population. Russian Journal of Rehabilitation Medicine. 2020; (4): 4–16. https://elibrary.ru/pxeevi (in Russian)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Efimova N.V., Kuzmina M.V., Bobkova E.V., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.