Studying the ability of the food additive E171 (titanium dioxide) to induce gene mutations in bacteria
- Autores: Tsareva A.A.1, Egorova O.V.1, Demidova Y.V.1, Ilyushina N.A.1
-
Afiliações:
- Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
- Edição: Volume 102, Nº 12 (2023)
- Páginas: 1361-1366
- Seção: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- ##submission.datePublished##: 31.12.2023
- URL: https://archivog.com/0016-9900/article/view/638287
- DOI: https://doi.org/10.47470/0016-9900-2023-102-12-1361-1366
- EDN: https://elibrary.ru/hcceym
- ID: 638287
Citar
Texto integral
Resumo
Introduction. Titanium dioxide in the Russian Federation is approved for use in the food industry, in the production of medicines and hygiene products. The food additive E171 is a mixture of micro- and nanoparticles of TiO2. In 2010, IARC classified TiO2 in nanoform as a probably carcinogenic to humans (Group 2B). In vitro and in vivo studies of the genotoxicity of titanium dioxide revealed contradictory results, indicating both the presence and absence of TiO2 mutagenicity.
The aim of the work is to evaluate the mutagenicity of the food additive E171 in the Ames test using standard and modified protocols.
Materials and methods. The ability of food additive E171 (China) to induce reverse gene mutations in 5 strains of Salmonella typhimurium was studied under standard and modified conditions (cultivation of bacteria in the presence of methylated b-cyclodextrin (MCD) and/or pre-incubation for 1 hour in potassium phosphate buffer, pH 5.5 containing 10 mM NaCl and/or 3M MCD).
Results. A sample of food additive E171 based on rutile titanium dioxide does not induce gene mutations in S. typhimurium in standard experiments. Modification of the Ames test protocol (decrease of the incubation mixture pH, addition of 10 mM NaCl) revealed statistically significant dose-dependent effects in TA100, TA98, and TA97 strains under metabolic incubation conditions. However, the fold increase of the number of revertants in the experimental plates compared to the negative control was < 2.
Limitations. The research is limited to the mutagenicity assessment of food additive E171 (titanium dioxide) in the Ames test.
Conclusion. The evaluation of the mutagenicity of titanium dioxide in other in vitro and in vivo tests taking into account the size and shape of the particles, is necessary to resolve the issue of its genetic safety as a food dye. A full range of studies will be performed on other samples of titanium dioxide presented in the market of the Russian Federation.
Compliance with ethical standards. The study does not need the approval of the biomedical ethics committee or other documents.
Contribution:
Tsareva A.A. — collection of material, collection of literature data;|
Egorov O.V. — concept and design of research, collection of literature data, analysis of results, writing text;
Demidova Yu.V. — collection of material;
Ilyushina N.A. — concept and design of research, analysis of results, writing text.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: July 25, 2023 / Accepted: November 15, 2023 / Published: December 28, 2023
Palavras-chave
Sobre autores
Anastasiya Tsareva
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Autor responsável pela correspondência
Email: noemail@neicon.ru
ORCID ID: 0000-0002-3479-9602
Младший научный сотрудник отдела генетической токсикологии ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, 141014, Московская область, г. Мытищи, Россия, ул. Семашко, д. 2
e-mail: grabovskaya_aa@fferisman.ru
RússiaOlga Egorova
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: egorova.ov@fncg.ru
ORCID ID: 0000-0003-4748-8771
Senior researcher of the department of genetic toxicology, Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing, Mytishchi, 141014, Russian Federation
e-mail: egorova.ov@fncg.ru
RússiaYuliya Demidova
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: noemail@neicon.ru
ORCID ID: 0000-0002-5356-2600
Младший научный сотрудник отдела генетической токсикологии ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, 141014, Московская область, г. Мытищи, Россия, ул. Семашко, д. 2
e-mail: demidovaiv@fferisman.ru
RússiaNataliya Ilyushina
Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Email: noemail@neicon.ru
ORCID ID: 0000-0001-9122-9465
Доктор биологических наук, заведующая отделом генетической токсикологии ФБУН «ФНЦГ им. Ф.Ф. Эрисмана» Роспотребнадзора, 141014, Московская область, г. Мытищи, Россия, ул. Семашко, д. 2
e-mail: iliushinana@fferisman.ru
RússiaBibliografia
- Wani M.R, Shadab G. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol. Ind. health. 2020; 36(7): 514–30. https://doi.org/10.1177/0748233720936835
- ANSES. AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux risques liés à l’ingestion de l’additif alimentaire E171; 2019. Available at: https://www.anses.fr/en/system/files/ERCA2019SA0036.pdf (in French)
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Carbon black, titanium dioxide, and talc. IARC Monogr. Eval. Carcinog. Risks Hum. 2010; 93: 1–413.
- NIOSH. Current Intelligence Bulletin 63. Occupational Exposure to Titanium Dioxide; 2011. Available at: https://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf
- Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113(7): 823–39. https://doi.org/10.1289/ehp.7339
- Baggs R.B., Ferin J., Oberdörster G. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet. Pathol. 1997; 34(6): 592–7. https://doi.org/10.1177/030098589703400607
- Afaq F., Abidi P., Matin R., Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J. Appl. Toxicol. 1998; 18(5): 307–12. https://clck.ru/37DpbR
- Bampidis V., Azimonti G., Bastos M.L., Christensen H., Dusemund B., Fašmon Durjava M., et al. Safety and efficacy of a feed additive consisting of titanium dioxide for all animal species (Titanium Dioxide Manufacturers Association). EFSA J. 2021; 19(6): e06630. https://doi.org/10.2903/j.efsa.2021.6630
- Chen T., Yan J., Li Y. Genotoxicity of titanium dioxide nanoparticles. J. Food Drug. Anal. 2014; 22(1): 95–104. https://doi.org/10.1016/j.jfda.2014.01.008
- Wani M.R., Shadab G. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol. Ind. Health. 2020; 36(7): 514–30. https://doi.org/10.1177/0748233720936835
- Hamel A., Roy M., Proudlock R. Chapter 4 – The bacterial reverse mutation test. In: Proudlock R., ed. Genetic Toxicology Testing. A Laboratory Manual. Academic Press; 2016: 79–138. https://doi.org/10.1016/B978-0-12-800764-8.00004-5
- OECD iLibrary. Test No. 471: Bacterial Reverse Mutation Test; 2020. Available at: https://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en
- Maron D.M., Ames B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983; 113(3–4): 173–215. https://doi.org/10.1016/0165-1161(83)90010-9
- Egorova O.V., Ilyushina N.A., Rakitskii V.N. Mutagenicity evaluation of pesticide analogs using standard and 6-well miniaturized bacterial reverse mutation tests. Toxicol. In Vitro. 2020; 69: 105006. https://doi.org/10.1016/j.tiv.2020.105006
- Donova M.V., Nikolayeva V.M., Dovbnya D.V., Gulevskaya S.A., Suzina N.E. Methyl-β-cyclodextrin alters growth, activity and cell envelop features of sterol-transforming mycobacteria. Microbiology (Reading). 2007; 153(Pt. 6): 1981–92. https://doi.org/10.1099/mic.0.2006/001636-0
- Shen Y., Liang J., Li H., Wang M. Hydroxypropyl-β-cyclodextrin-mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex. Appl. Microbiol. Biotechnol. 2015; 99(1): 387–97. https://doi.org/10.1007/s00253-014-6089-5
- Egorova O.V., Demidova Yu.V., Ilyushina N.A. Assessment of experimental conditions affecting spontaneous mutation level of salmonella strains used in the Ames test. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2021; 100(7): 736–43. https://doi.org/10.47470/0016-9900-2021-100-7-736-743 https://elibrary.ru/szicqb (in Russian)
- Jomini S., Labille J., Bauda P., Pagnout C. Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO2 nanoparticles and byproducts from a sunscreen TiO2-based nanocomposite. Toxicol. Lett. 2012; 215(1): 54–61. https://doi.org/10.1016/j.toxlet.2012.09.012
- Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere. 2011; 83(8): 1124–32. https://doi.org/10.1016/j.chemosphere.2011.01.025
- Akhal’tseva L.V., Zhurkov V.S., Ingel’ F.I. Mutagenic activity of nanomaterials in the Ames test. Literature review. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2019; 98(11): 1309–20. https://doi.org/10.18821/0016-9900-2019-98-11-1309-1320 https://elibrary.ru/yoylxs (in Russian)
- Butler K.S., Casey B.J., Garborcauskas G.V., Dair B.J., Elespuru R.K. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014; 768: 14–22. https://doi.org/10.1016/j.mrgentox.2014.04.008
Arquivos suplementares
