Psychosocial risks of the work environment and metabolic syndrome (literature review)
- 作者: Bezrukova G.A.1, Novikova T.A.1, Mikerov A.N.1,2
-
隶属关系:
- Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
- Saratov State Medical University n. a. V.I. Razumovsky
- 期: 卷 103, 编号 1 (2024)
- 页面: 51-57
- 栏目: OCCUPATIONAL HEALTH
- ##submission.datePublished##: 12.02.2024
- URL: https://archivog.com/0016-9900/article/view/638266
- DOI: https://doi.org/10.47470/0016-9900-2024-103-1-51-57
- EDN: https://elibrary.ru/jqbajb
- ID: 638266
如何引用文章
全文:
详细
Introduction. Along with physical, chemical, ergonomic, and biological factors, working psychosocial stress is one of the main risks for the development of metabolic syndrome (MS), system effects of which can cause severe lesions of cardiovascular, endocrine, and hepatobiliary systems.
The purpose of the work was to summarize and analyze modern domestic and foreign experience of studying the relationship between categories and factors of psychosocial risks of the working environment and MS and its components in different occupational cohorts.
The publications were searched through the RSCI, CyberLeninka, eLibrary, and PubMed databases containing Russian and foreign sources of scientific information for 2006–2023.
The article briefly highlights the taxonomy of categories and factors of psychosocial hazards and risks in the workplace, as well as the most popular questionnaires for quantitative assessment of psychosocial stress, based on the requirement/control model (JDC) assessing workload in gradations of high, active, passive, low, and effort-reward imbalance (ERI) model. The close association of JDC and ERI with metabolic syndrome, obesity, blood lipid profile atherogenicity, and hyperglycemia in men and women of different occupational cohorts with high and low socioeconomic status was examined.
Conclusion. The analysis of scientific publications has convincingly shown working psychosocial stress to have a causal relationship with MS that regardless of intervening factors (age, gender, socio-economic status, lifestyle, bad habits). At the same time, the statistical significance of stress-realizing effects in relation to MS components is determined by the used model for assessing psychosocial risks and is complementary to the cognitive assessment of perceived stress, which must be taken into account when planning and conducting research.
Contribution of the authors:
Bezrukova G.A. — research concept, collection and processing of material, writing the text, compilation of the list of literature, editing;
Novikova T.A. — collection and processing of material, writing the text, compilation of the list of literature;
Mikerov A.N. — text editing.
All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.
Conflict of interest. The authors declare no conflict of interest.
Acknowledgement. The study had no sponsorship.
Received: December 1, 2023 / Accepted: December 28, 2023 / Published: January 31, 2024
关键词
作者简介
Galina Bezrukova
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
编辑信件的主要联系方式.
Email: bezrukovagala@yandex.ru
ORCID iD: 0009-0009-6254-3506
MD, PhD, DSci., chief researcher of the Department of occupational medicine, Doctor of Medicine, Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Saratov, 410022, Russian Federation
e-mail: bezrukovagala@yandex.ru
俄罗斯联邦Tamara Novikova
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: novikovata-saratov@yandex.ru
ORCID iD: 0000-0003-1463-0559
MD, PhD, head of the Laboratory of occupational health, associate professor, Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Saratov, 410022, Russian Federation
e-mail: novikovata-saratov@yandex.ru
俄罗斯联邦Anatoly Mikerov
Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Saratov State Medical University n. a. V.I. Razumovsky
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0670-7918
MD, PhD, DSci., head of the Saratov Hygiene Medical Research Center of the Federal Scientific Center for Medical and Preventive Health Risk Management Technologies, Saratov, 410022, Russian Federation
e-mail: a_mikerov@mail.ru
俄罗斯联邦参考
- Lemieux I., Després J.P. Metabolic syndrome: past, present and future. Nutrients. 2020; 12(11): 3501. https://doi.org/10.3390/nu12113501
- Alberti K.G., Eckel R.H., Grundy S.M., Zimmet P.Z., Cleeman J.I., Donato K.A., et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640–5. https://doi.org/10.1161/CIRCULATIONAHA.109.192644
- Guembe M.J., Fernandez-Lazaro C.I., Sayon-Orea C., Toledo E., Moreno-Iribas C. Risk for cardiovascular disease associated with metabolic syndrome and its components: a 13-year prospective study in the RIVANA cohort. Cardiovasc. Diabetol. 2020; 19(1): 195. https://doi.org/10.1186/s12933-020-01166-6
- Deusdará R., de Moura Souza A., Szklo M. Association between obesity, overweight, elevated waist circumference, and insulin resistance markers among Brazilian adolescent students. Nutrients. 2022; 14(17): 3487. https://doi.org/10.3390/nu14173487
- Fahed G., Aoun L., Bou Zerdan M., Allam S., Bouferraa Y., Assi H.I. Metabolic syndrome: updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022; 23(2): 786. https://doi.org/10.3390/ijms23020786
- Kaur J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014; 2014: 943162. https://doi.org/10.1155/2014/943162
- Calzadilla Bertot L., Adams L.A. The natural course of non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2016; 17(5): 774. https://doi.org/10.3390/ijms17050774
- Ding H., Zhang J., Zhang F., Zhang S., Chen X., Liang W., et al. Resistance to the insulin and elevated level of androgen: a major cause of polycystic ovary syndrome. Front. Endocrinol. (Lausanne). 2021; 20: 741764. https://doi.org/10.3389/fendo.2021.741764
- Xu Z., Tao L., Su H. The complement system in metabolic-associated kidney diseases. Front. Immunol. 2022; 13: 902063. https://doi.org/10.3389/fimmu.2022.902063
- Mili N., Paschou S.A., Goulis D.G., Dimopoulos M.A., Lambrinoudaki I., Psaltopoulou T. Obesity, metabolic syndrome, and cancer: Pathophysiological and therapeutic associations. Endocrine. 2021; 74(3): 478–97. https://doi.org/10.1007/s12020-021-02884-x
- Zhong L., Liu J., Liu S., Tan G. Correlation between pancreatic cancer and metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. (Lausanne). 2023; 14: 1116582. https://doi.org/10.3389/fendo.2023.1116582
- Ali A.H.K. Prevalence and predictors of metabolic syndrome among patients with bronchial asthma: a cross sectional study. Open Respir. Med. J. 2021; 15: 14–8. https://doi.org/10.2174/1874306402115010014
- Bogdanova O.G., Myl’nikova I.V. Metabolic syndrome: situation in the world, clinical-diagnostic criteria and risk factors (review of literature). Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2020; 99(10): 1165–9. https://doi.org/10.47470/0016-9900-2020-99-10-1165-1169 https://elibrary.ru/ojeagh (in Russian)
- Gao P., Snyder M. Exposome-wide association study for metabolic syndrome. Front. Genet. 2021; 12: 783930. https://doi.org/10.3389/fgene.2021.783930
- Musani S.K., Martin L.J., Woo J.G., Olivier M., Gurka M.J., DeBoer M.D. Heritability of the severity of the metabolic syndrome in whites and blacks in 3 large cohorts. Circ. Cardiovasc. Genet. 2017; 10(2): e001621. https://doi.org/10.1161/CIRCGENETICS.116.001621
- Schwartz M.W., Seeley R.J., Zeltser L.M., Drewnowski A., Ravussin E., Redman L.M., et al. Obesity pathogenesis: an endocrine society scientific statement. Endocr. Rev. 2017; 38(4): 267–96. https://doi.org/10.1210/er.2017-00111
- Mohajer N., Du C.Y., Checkcinco C., Blumberg B. Obesogens: how they are identified and molecular mechanisms underlying their action. Front. Endocrinol. (Lausanne). 2021; 12: 780888. https://doi.org/10.3389/fendo.2021.780888
- Papalou O., Kandaraki E.A., Papadakis G., Diamanti-Kandarakis E. Endocrine disrupting chemicals: an occult mediator of metabolic disease. Front. Endocrinol. (Lausanne). 2019; 10: 112. https://doi.org/10.3389/fendo.2019.00112
- Kuo W.C., Bratzke L.C., Oakley L.D., Kuo F., Wang H., Brown R.L. The association between psychological stress and metabolic syndrome: A systematic review and meta-analysis. Obes. Rev. 2019; 20(11): 1651–64. https://doi.org/10.1111/obr.12915
- Kabanova T.N., Shport S.V, Makurina A.P. Current international research on risk factors of psychological stress and psychosocial atmosphere in the workplace. Sotsial’naya i klinicheskaya psikhiatriya. 2019; 29(2): 93–8. https://elibrary.ru/hweeru (in Russian)
- WHO. Leka S.A. Health impact of psychosocial hazards at work: an overview; 2010. Available at: https://apps.who.int/iris/bitstream/handle/10665/44428/9789241500272_eng.pdf
- De Sio S., Cedrone F., Trovato Battagliola E., Buomprisco G., Perri R., Greco E. The perception of psychosocial risks and work-related stress in relation to job insecurity and gender differences: a cross-sectional study. Biomed. Res. Int. 2018; 2018: 7649085. https://doi.org/10.1155/2018/7649085
- Schulte P.A., Streit J.M.K., Sheriff F., Delclos G., Felknor S.A., Tamers S.L., et al. Potential scenarios and hazards in the work of the future: a systematic review of the peer-reviewed and gray literatures. Ann. Work Expo. Health. 2020; 64(8): 786–816. https://doi.org/10.1093/annweh/wxaa051
- Irastorza X., Cavet M., Cockburn W. Third European Survey of Enterprises on New and Emerging Risks (ESENER 3); 2019. Available at: https://search.gesis.org/research_data/ZA7735
- Bangasser D.A., Wicks B. Sex-specific mechanisms for responding to stress. J. Neurosci. Res. 2017; 95(1–2): 75–82. https://doi.org/10.1002/jnr.23812
- Bello Z. Tanko G.I. Review of work-life balance theories. GATR Global J. Bus. Soc. Sci. Review. 2020; 8(4): 217–27. https://doi.org/10.35609/gjbssr.2020.8.4(3)
- Helman T.J., Headrick J.P., Stapelberg N.J.C., Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front. Cardiovasc. Med. 2023; 10: 1072042. https://doi.org/10.3389/fcvm.2023.1072042
- Cho D.Y., Koo J.W. Differences in metabolic syndrome prevalence by employment type and sex. Int. J. Environ. Res. Public. Health. 2018; 15(9): 1798. https://doi.org/10.3390/ijerph15091798
- Lukan J., Bolliger L., Pauwels N.S., Luštrek M., Bacquer D., Clays E. Work environment risk factors causing day-to-day stress in occupational settings: a systematic review. BMC Public. Health. 2022; 22(1): 240. https://doi.org/10.1186/s12889-021-12354-8
- Chandola T., Brunner E., Marmot M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ. 2006; 332(7540): 521–5. https://doi.org/10.1136/bmj.38693.435301.80
- Edwards E.M., Stuver S.O., Heeren T.C., Fredman L. Job strain and incident metabolic syndrome over 5 years of follow-up: the coronary artery risk development in young adults study. J. Occup. Environ. Med. 2012; 54(12): 1447–52. https://doi.org/10.1097/JOM.0b013e3182783f27
- Yamaguchi M., Eguchi M., Akter S., Kochi T., Hu H., Kashino I., et al. The association of work-related stressors and their changes over time with the development of metabolic syndrome: The Furukawa Nutrition and Health Study. J. Occup. Health. 2018; 60(6): 485–93. https://doi.org/10.1539/joh.2017-0298-OA
- Inoue A., Kawakami N., Tsutsumi A., Shimazu A., Miyaki K., Takahashi M., et al. Association of job demands with work engagement of Japanese employees: comparison of challenges with hindrances (J-HOPE). PLoS One. 2014; 9(3): e91583. https://doi.org/10.1371/journal.pone.0091583
- Eriksson H., Torén K., Rosengren A., Andersson E., Söderberg M. Psychosocial job exposure and risk of coronary artery calcification. PLoS One. 2021; 16(5): e0252192. https://doi.org/10.1371/journal.pone.0252192
- Söderberg M., Eriksson H., Torén K., Bergström G., Andersson E., Rosengren A. Psychosocial job conditions and biomarkers of cardiovascular disease: A cross-sectional study in the Swedish CArdioPulmonary bioImage Study (SCAPIS). Scand. J. Public Health. 2022; 51(6): 843–52. https://doi.org/10.1177/14034948211064097
- Eftekhari S., Alipour F., Aminian O., Saraei M. The association between job stress and metabolic syndrome among medical university staff. J. Diabetes Metab. Disord. 2021; 20(1): 321–7. https://doi.org/10.1007/s40200-021-00748-9
- Nyberg S.T., Fransson E.I., Heikkilä K., Alfredsson L., Casini A., Clays E., et al. Job strain and cardiovascular disease risk factors: meta-analysis of individual-participant data from 47,000 men and women. PLoS One. 2013; 8(6): e67323. https://doi.org/10.1371/journal.pone.0067323
- Choi B. Developing a job exposure matrix of work organization hazards in the United States: a review on methodological issues and research protocol. Saf. Health Work. 2020; 11(4): 397–404. https://doi.org/10.1016/j.shaw.2020.05.007
- Tanimoto A.S., Richter A., Lindfors P. How do effort, reward, and their combined effects predict burnout, self-rated health, and work-family conflict among permanent and fixed-term faculty? Ann. Work Expo. Health. 2023; 67(4): 462–72. https://doi.org/10.1093/annweh/wxac094
- Burr H., Formazin M., Pohrt A. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology. Scand. J. Work Environ. Health. 2016; 42(3): 251–5. https://doi.org/10.5271/sjweh.3557
- Söderberg M., Rosengren A., Hillström J., Lissner L., Torén K. A cross-sectional study of the relationship between job demand-control, effort-reward imbalance and cardiovascular heart disease risk factors. BMC Public Health. 2012; 12: 1102. https://doi.org/10.1186/1471-2458-12-1102
- Trudel X., Brisson C., Milot A., Masse B., Vézina M. Psychosocial work environment and ambulatory blood pressure: independent and combined effect of demand–control and effort–reward imbalance models. Occup. Environ. Med. 2013; 70(11): 815–22. https://doi.org/10.1136/oemed-2013-101416
- Gilbert-Ouimet M., Brisson C., Milot A., Vézina M. Double exposure to adverse psychosocial work factors and high family responsibilities as related to ambulatory blood pressure at work: a 5-year prospective study in women with white-collar jobs. Psychosom. Med. 2017; 79(5): 593–602. https://doi.org/10.1097/PSY.0000000000000450
- Gilbert-Ouimet M., Trudel X., Brisson C., Milot A., Vézina M. Adverse effects of psychosocial work factors on blood pressure: systematic review of studies on demand-control-support and effort-reward imbalance models. Scand. J. Work Environ. Health. 2014; 40(2): 109–32. https://doi.org/10.1136/10.5271/sjweh.3390
- Magnusson Hanson L.L., Westerlund H., Goldberg M., Zins M., Vahtera J., Hulvej Rod N., et al. Work stress, anthropometry, lung function, blood pressure, and blood-based biomarkers: a cross-sectional study of 43,593 French men and women. Sci. Rep. 2017; 7(1): 9282. https://doi.org/10.1038/s41598-017-07508-x
- Almadi T., Cathers I., Chow C.M. Associations among work-related stress, cortisol, inflammation, and metabolic syndrome. Psychophysiology. 2013; 50(9): 821–30. https://doi.org/10.1111/psyp.12069
- Magnavita N., Fileni A. Work stress and metabolic syndrome in radiologists: first evidence. Radiol. Med. 2014; 119(2): 142–8. https://doi.org/10.1007/s11547-013-0329-0
- Garbarino S., Magnavita N. Work stress and metabolic syndrome in police officers. A prospective study. PLoS One. 2015; 10(12): e0144318. https://doi.org/10.1371/journal.pone.0144318
- Schmidt B., Bosch J.A., Jarczok M.N., Herr R.M., Loerbroks A., van Vianen A.E., et al. Effort-reward imbalance is associated with the metabolic syndrome – findings from the Mannheim Industrial Cohort Study (MICS). Int. J. Cardiol. 2015; 178: 24–8. https://doi.org/10.1016/j.ijcard.2014.10.115
补充文件
