Peculiarities of the formation of Dy/Co periodic multilayer systems upon magnetron sputtering

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

X-ray and magnetometry methods are used to show that, during magnetron sputtering of Dy/Co periodic multilayer systems, the DyCo2 and DyCo3 intermetallics form. The main reason for the phase formation of various intermetallics is the structural state of buffer layer, namely, its crystalline and amorphous state in the case of crystalline and glass substrate, respectively.

全文:

受限制的访问

作者简介

G. Prutskov

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
俄罗斯联邦, Moscow, 123182

I. Subbotin

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
俄罗斯联邦, Moscow, 123182

E. Kravtsov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: makarova@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108; Ekaterinburg, 620002

M. Makarova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

编辑信件的主要联系方式.
Email: makarova@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108; Ekaterinburg, 620002

M. Milyaev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: makarova@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108; Ekaterinburg, 620002

E. Pashaev

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
俄罗斯联邦, Moscow, 123182

参考

  1. Tudu B., Ashutosh T. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications // Vacuum. 2017. V. 146. P. 329–341.
  2. Mangin S., Gottwald M., Lambert C.-H., Steil D. Engineered materials for all-optical helicity-dependent magnetic switching // Nature Materials. 2014. V. 13. P. 286–292.
  3. Hansen P., Klahn S., Clausen C., Much G., Witter K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Dy, Ho, Fe, Co // J. Appl. Phys. 1991. V. 69. P. 3194–3207.
  4. Schubert C., Hassdenteufel A., Matthes P., Schmidt J., Helm M., Bratschitsch R., Albrecht M. All-optical helicitydependent magnetic switching in an artificial zero momentmagnet // Appl. Phys. Lett. 2014. V. 104. Р. 082406.
  5. Becker J., Tsukamoto A., Kirilyuk A., Maan J.C., Rasing T., Christianen P.C.M., Kimel A.V. Ultrafast Magnetism of a Ferrimagnet Across the Spin-Flop Transition in High Magnetic Fields // Phys. Rev. Lett. 2017. V. 118. Р. 117203.
  6. Savoini M., Medapalli R., Koene B., Khorsand A.R., Le Guyader L., Duò L., Finazzi M., Tsukamoto A., Itoh A., Nolting F., Kirilyuk A., Kimel A.V., Rasing Th. Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light // Phys. Rev. B. 2012. V. 86. P. 140404(R).
  7. Alebrand S., Gottwald M., Hehn M., Steil D., Cinchetti M., Lacour D., Fullerton E.E., Aeschlimann M., Mangin S. Light-induced magnetization reversal of high-anisotropy TbCo alloy films // Appl. Phys. Lett. 2012. V. 101. P. 162408.
  8. Shan Z.S., Sellmyer D.J. Magnetism of rare-earth–transition-metal nanoscale multilayers. I. Experiments on Dy/Co, Dy/Fe, and Tb/Fe // Phys. Rev. B. 1990. V. 42. P. 10433.
  9. Svalov A.V., Vas’kovskiy V.O., Kurlyandskaya G.V. Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals // Phys. Met. Metal. 2017. V. 118. № 13. P. 1263–1299.
  10. Васьковский В.О. Магнетизм наносистем на основе редкоземельных и 3d-переходных металлов. Хрестоматия. Екатеринбург: УрГУ, 2007. 263 с.
  11. Макарова М.В., Кравцов Е.А., Проглядо В.В., Хайдуков Ю.Н., Устинов В.В. Структура и магнетизм сверхрешеток Co/Dy // ФТТ. 2020. Т. 62. № 9. С. 1499.
  12. Subbotin I.A., Pashaev E.M., Vasilev A.L., Chesnokov Yu.M., Prutskov G.V., Kravtsov E.A., Makarova M.V., Proglyado V.V., Ustinov V.V. The Influence of Microstructure on Perpendicular Magnetic Anisotropy in Co/Dy Periodic Multilayer Systems // Physica B: Condensed Matter. 2019. V. 573. P. 28–35.
  13. Nie H.B., Xu S.Y., Wang S.J., You L.P., Yang Z., Ong C.K., Li J., Liew T.Y.F. Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering // Applied Physics A. 2001. V. 73. P. 229–236.
  14. Mueller M.H. The lattice parameter of tantalum // Scripta Metallurgica. 1977. V. 11. P. 693–693.
  15. Okamoto H. Supplemental Literature Review of Binary Phase Diagrams: Ag-Ho, Ag-Tb, Ag-Y, Cd-Na, Ce-Sn, Co-Dy, Cu-Dy, Cu-Sn, Ir-Pt, Mg-Pb, Mo-Ni, and Sc-Y // Journal of Phase Equilibria and Diffusion. 2014. V. 35. No. 2. P. 150–156.
  16. Zuo J.D., Wang Y.Q., Wu K., Zhang J.Y., Liu G., and Sun J. Phase tailoring of Ta films via buffer layer thicknesses controlling // Scr. Mater. 2022. V. 212. P. 114582.
  17. Наумова Л.И., Заворницын Р.С., Миляев М.А., Девятериков Д.И., Русалина А.С., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Устинов В.В. Гелимагнитная и кристаллографическая текстуры роста нанослоев диспрозия на буферных слоях Co90Fe10, Nb и β-Ta // ФММ. 2023. Т. 124. № 8. С. 692–702.
  18. Laguna-Marco M. A., Chaboy J., and Piquer C. Experimental determination of the R(5d)–T(3d) hybridization in rare-earth intermetallics // Phys. Rev. B. 2008. V. 77. P. 125132.
  19. Макарова М.В., Кравцов Е.А., Проглядо В.В., Субботин И.А., Пашаев Э.М., Холин Д.И., Хайдуков Ю.Н. Магнитная структура сверхрешеток Dy-Co вблизи температуры компенсации // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2023. № 4. С. 50–54.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Theoretical (solid) and experimental (dots) reflectometry curves for sample A and the residual curve σ. The inset shows a fragment of the curve in the range of 2.35–2.40 degrees.

下载 (20KB)
3. Fig. 2. Theoretical (solid) and experimental (dots) reflectometry curves for sample B and the residual curve σ. The inset shows a fragment of the curve in the range of 2.51–2.64 degrees.

下载 (22KB)
4. Fig. 3. Distribution profile of the real part of polarizability by depth for samples A (crystalline substrate) and B (amorphous substrate).

下载 (39KB)
5. Fig. 4. Distribution profile of the real part of polarizability within one period. The dashed lines indicate the values ​​of the real part of polarizability for pure elements Dy, Co and the average value of the real part of polarizability for the Dy 2 nm/Co 3 nm system.

下载 (18KB)
6. Fig. 5. Diffraction curves from samples A (crystalline substrate) and B (amorphous substrate) in 2θ-θ geometry.

下载 (15KB)
7. Fig. 6. Diffraction curves from samples A and B in the glancing reflection geometry at ω = 1°. The lines on the abscissa axis correspond to bulk Dy and Co.

下载 (36KB)
8. Fig. 7. Hysteresis loops for sample A with a crystalline Si substrate at different temperatures in a magnetic field directed perpendicular to the plane of the sample.

下载 (32KB)
9. Fig. 8. Hysteresis loops for sample B with a substrate made of amorphous glass SiO2 at different temperatures in a magnetic field directed perpendicular to the plane of the sample.

下载 (35KB)