Origin and evolution of apical growth in higher plants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the analysis of the structure, putative function and molecular genetic regulation of the apical meristems in gametophytes and sporophytes of higher plants within the framework of the question about the origin and evolution of their apical growth. The presence of several AIs and secondary plasmodesmata in the apical meristems of gametophytes of Anthocerotophyta and Marchantiophyta and in the sporophytes of Lycopodiales and Isoetales (Lycopodiopsida) indicates that the mechanism of post-cytokinetic plasmodesmata formation that enabled the evolutionary emergence of the simplex apical meristem might have arisen in the last common ancestor of higher plants. The reversion to the monoplex “algal” type of the apical meristem most likely occurred independently in the gametophytes of Bryophyta and the sporophytes of Selaginellales and Polypodiopsida as a consequence of the putative loss of this mechanism. Presence of intercalary zone of proliferating cells in the sporophytes of all bryophytes suggests that a multicellular intercalary meristem was ancestral for the diploid generation of higher plants while the transient apical meristem of the embryo of mosses could have arisen as a result of co-option and modification of the programs regulating the apical meristem of gametophytes. Among the key regulators of apical meristems, only C1KNOX transcription factors (TFs) seem to be sporophyte-specific. Presumably, they have initially regulated the delay of meiosis and diffuse cell proliferation of the ancestral multicellular sporophyte. Whereat they could control the newly evolved intercalary meristem, and the subsequent shift of their expression to the apical pole of the embryo played a key role in the emergence of the apical meristem in sporophytes. Although homologs of WOX transcription factors in bryophytes belong to the T1 superclade that is most distantly related to the T3 (or WUS) superclade of key regulators of the shoot apical meristem of angiosperms, they regulated the apical meristem in gametophytes of liverworts as their counterparts from T3 clade. Expression of WOX homologues, that are phylogenetically more close to WUS, in leaf primordia of lycophytes and root primordia of ferns suggests that the ancestral role of these TFs in sporophytes was the control of organ initiation. Presumably the role of the organizer of the apical meristem arose only in the WUS/WOX5 clade of the T3WOX superclade. Contradictory data on expression of WOX homologs in different gymnosperms do no allow to judge whether members of WUS/WOX5 clade already gained the function of the “organizer” of the shoot apical meristem in the common ancestor of seed plants or only in angiosperms. As the components of the CLE/CLAVATA module are present in the genomes and transcriptomes of the gametophytes of bryophytes and sporophytes of lycophytes, ferns and seed plants, most likely this regulatory module has evolved in the common ancestor of higher plants. Components of this module are shown to have similar functions in the regulation of apical meristems in bryophytes and angiosperms. However they have significant difference between two groups: in the latter CLE/CLAVATA module maintains the apical meristem through a feedback loop with WUS TF, while in the former this module does not interact with WOX homologs. Presence of at least two out of four of regulators of leaf development (ARP, C3HDZ, YABBY and KANADI) in hornworts, liverworts and mosses and presence of all four regulators in all bryoophytes together suggests that they all were already present in the last common ancestor of land plants. These data also indicate that the apical meristems of bryophyte gametophytes have already evolved the regulatory prerequisites for organogenesis. In sporophytes of lycophytes and ferns all the above mentioned regulators are expressed not only in primordia of lateral organs, but also in the shoot apical meristem. Together with the fact that lycophytes and some ferns have dichotomous branching, these data suggest that the program of lateral organs formation in the apical meristem could have evolved as a result of modification of the shoot dichotomy program. Presumably, the functional specificity of the same regulators in different taxa reflects the differences in the distribution and putative action of phytohormone auxin.

Full Text

Restricted Access

About the authors

M. A. Romanova

St. Petersburg State University

Author for correspondence.
Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg

V. V. Domashkina

St. Petersburg State University; Komarov Botanical Institute RAS

Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg; St. Petersburg

A. I. Maksimova

Komarov Botanical Institute RAS

Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg

O. V. Voitsekhovskaja

Komarov Botanical Institute RAS

Email: m.romanova@spbu.ru
Russian Federation, St. Petersburg

References

  1. Albert V.A. 1999. Shoot apical meristems and floral patterning: an evolutionary perspective. — Trends Plant Sci. 4(3): 84–86. https://doi.org/10.1093/plphys/kiac313
  2. Alvarez J.M., Bueno N., Cañas R.A., Avila C., Cánovas F.M., Ordás R.J. 2018. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: new insights into the gene family evolution. — Plant Physiol Biochem. 123: 304–318. https://doi.org/10.1016/j.plaphy.2017.12.031
  3. Ambrose B.A., Vasco A. 2016. Bringing the multicellular fern meristem into focus. — New Phytol. 210(3): 790–793. https://doi.org/10.1111/nph.13825
  4. Arnoux-Courseaux M., Coudert Y. 2024. Re-examining meristems through the lens of evo-devo. — Trends Plant Sci. 29(4): 413–427. https://doi.org/10.1016/j.tplants
  5. Aso K., Kato M., Banks J.A., Hasebe M. 1999. Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants. — Mol. Biol. Evol. 16(4): 544–552. https://doi.org/10.1093/oxfordjournals.molbev.a026135
  6. Banks J.A. 1999. Gametophyte development in ferns. — Annu. Rev. Plant Biol. 50: 163–186. https://doi.org/10.1146/annurev.arplant.50.1.163
  7. Bartz M., Gola E.M. 2018. Meristem development and activity in gametophytes of the model fern, Ceratopteris richardii. — Developmental biology. 444(2): 107–115. https://doi.org/10.1016/j.ydbio.2018.10.005
  8. Bharathan G., Goliber T.E., Moore C., Kessler S., Pham T., Sinha N.R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science. — 296(5574): 1858–1860. https://doi.org/10.1126/science.1070343
  9. Bierhorst D.W. 1971. Morphology of Vascular Plants. New York. 560 p.
  10. Bower F.O. 1935. Primitive land plants-also known as the Archegoniatae. London. 658 p.
  11. Bowman J.L., Kohchi T., Yamato K.T., Jenkins J., Shu S., Ishizaki K. et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 171(2): 287–304.e15. https://doi.org/10.1016/j.cell.2017.09.030
  12. Bowman J.L., Sakakibara K., Furumizu C., Dierschke T. 2016. Evolution in the cycles of life. — Annu Rev Genet. 50: 133–154. https://doi.org/10.1146/annurev-genet-120215-035227
  13. Bowman J.L., Smyth D.R. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. — Development. 126(11): 2387–2396. https://doi.org/10.1242/dev.126.11.2387
  14. Brand U., Fletcher J.C., Hobe M., Meyerowitz E.M., Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. — Science. 289(5479): 617–619. https://doi.org/10.1126/science.289.5479.617
  15. Briginshaw L.N., Flores-Sandoval E., Dierschke T., Alvarez J.P., Bowman J.L. 2022. KANADI promotes thallus differentiation and FR-induced gametangiophore formation in the liverwort Marchantia. — New Phytol. 234(4): 1377–1393. https://doi.org/10.1111/nph.18046
  16. Bruce J.G. 1979. Gametophyte of Lycopodium digitatum. — Amer. J. Bot. 66(10): 1138–1150. https://doi.org/10.1002/j.1537-2197.1979.tb06333.x
  17. Bueno N., Alvarez J.M., Ordás R.J. 2020. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. — Plant Sci. 301: 110691. https://doi.org/10.1016/j.plantsci.2020.110691
  18. Bueno N., Cuesta C., Centeno M.L., Ordás R.J., Alvarez J.M. 2021. In vitro plant regeneration in conifers: the role of WOX and KNOX gene families. — Genes. 12(3): 438. https://doi.org/10.3390/genes12030438
  19. Byrne M.E., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A., Martienssen R.A. 2000. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. — Nature. 408(6815): 967–971. https://doi.org/10.1038/35050091
  20. Cammarata J., Roeder A., Scanlon M.J. 2023. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. — J. of Exp B. 74(21): 6541–6550. https://doi.org/10.1093/jxb/erad299
  21. Chickarmane V.S., Gordon S.P., Tarr P.T., Heisler M.G., Meyerowitz E.M. 2012. Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. — Proc. Natl. Acad. Sci. USA. 109(10): 4002–4007. https://doi.org/10.1073/pnas.1200636109
  22. Cook M.E., Graham L.E., Botha C., Lavin C.A. 1997. Comparative ultrastructure of plasmodesmata of Chara and selected bryophytes: toward an elucidation of the evolutionary origin of plant plasmodesmata. — Amer. J. Bot. 84(9): 1169–1178. https://doi.org/10.2307/2446040
  23. Cooke T.D., Tilney M.S., Tilney L.G. 1996. Plasmodesmatal networks in apical meristems and mature structures: geometric evidence for both primary and secondary formation of plasmodesmata. — In: Membranes: specialized functions in plants. Cambridge. Р. 471–488.
  24. Coudert Y., Novák O., Harrison C.J. 2019. A KNOX–Cytokinin regulatory module predates the origin of indeterminate vascular plants. — Curr. Biol. 29(16): 2743–2750.e5. https://doi.org/10.1016/j.cub.2019.06.083
  25. Daum G., Medzihradszky A., Suzaki T., Lohmann J.U. 2014. A mechanistic framework for non cell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA. 111(40): 14619–14624. https://doi.org/10.1073/pnas.1406446111
  26. De Vries J., Fischer A.M., Roettger M., Rommel S., Schluepmann H., Bräutigam A., Carlsbecker A., Gould S.B. 2016. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. — New Phytol. 209(2): 705–720. https://doi.org/10.1111/nph.13630
  27. De Sousa e Melo F., de Sauvage F.J. 2019. Cellular plasticity in intestinal homeostasis and disease. — Cell Stem Cell. 24(1): 54–64. https://doi.org/10.1016/j.stem.2018.11.019
  28. Dengler N.G. 1983. The developmental basis of anisophylly in Selaginella martensii. I. Initiation and morphology of growth. Amer. J. Bot. 70(2): 181–192. https://doi.org/10.2307/2443262
  29. Dierschke T., Flores-Sandoval E., Rast-Somssich M.I., Althoff F., Zachgo S., Bowman J.L. 2021. Gamete expression of TALE class HD genes activates the diploid sporophyte program in Marchantia polymorpha. — eLife. 10: e57088. https://doi.org/10.7554/eLife.57088
  30. Ding B., Haudenshield J.S., Hull R.J., Wolf S., Beachy R.N., Lucas W.J. 1992. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. — The Plant cell. 4(8): 915–928. https://doi.org/10.1105/tpc.4.8.915
  31. Ding Z., Friml J. 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. — Proc. Natl. Acad. Sci. USA. 107(26): 12046–12051. https://doi.org/10.1073/pnas.100067210
  32. Donoghue P.C.J., Harrison C.J., Paps J., Schneider H. 2021. The evolutionary emergence of land plants. — Curr Biol. 31: R1281—R1298. https://doi.org/10.1016/j.cub.2021.07.038
  33. Du H., Ran J., Feng Y., Wang X. 2020. The flattened and needlelike leaves of the pine family (Pinaceae) share a conserved genetic network for adaxial-abaxial polarity but have diverged for photosynthetic adaptation. — BMC Evol Biol. 20(1): 131. https://doi.org/10.1186/s12862-020-01694-5
  34. Eklund D.M., Ishizaki K., Flores-Sandoval E., Kikuchi S., Takebayashi Y., …, Bowman J.L. 2015. Auxin produced by the Indole-3-Pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. — The Plant cell. 27(6): 1650–1669. https://doi.org/10.1105/tpc.15.00065
  35. Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F., Bowman J.L. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. — Curr. Biol. 13(20): 1768–1774. https://doi.org/10.1016/j.cub.2003.09.035
  36. Esau K. 1969. Plant anatomy. Moscow. 564 p. (In Russ.).
  37. Eshed Y., Izhaki A., Baum S.F., Floyd S.K., Bowman J.L. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. — Development. 131(12): 2997–3006. https://doi.org/10.1242/dev.01186
  38. Evkaikina A.I., Romanova M.A., Voitsekhovskaja O.V. 2014. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study. — Front Plant Sci. 5: 31. https://doi.org/10.3389/fpls.2014.00031
  39. Evkaikina A.I., Berke L., Romanova M.A., Proux-Wéra E., Ivanova A.N., Rydin C., Pawlowski K., Voitsekhovskaja O.V. 2017. The Huperzia selago shoot tip transcriptome sheds new light on the evolution of leaves. — Genome Biol. Evol. 9(9): 2444–2460. https://doi.org/10.1093/gbe/evx169
  40. Finet C., Floyd S.K., Conway S.J., Zhong B., Scutt C.P., Bowman J.L. 2016. Evolution of the YABBY gene family in seed plants. — Evol. Dev. 18(2): 116–126. https://doi.org/10.1111/ede.12173
  41. Floyd S.K., Bowman J.L. 2006. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. — Curr. Biol. 16: 1911–1917. https://doi.org/10.1016/j.cub.2006.07.067
  42. Floyd S.K., Bowman J.L. 2007. The ancestral developmental tool kit of land plants. — Int. J. Plant Sci. 168(1): 1–35. https://doi.org/10.1086/509079
  43. Floyd S.K., Zalewski C.S. Bowman J.L. 2006. Evolution of class III homeodomain-leucine zipper genes in streptophytes. — Genetics. 173: 373–388. https://doi.org/10.1534/genetics.105.054239
  44. Floyd S.K., Ryan J.G., Conway S.J., Brenner E., Burris K.P., Burris J.N., … Stevenson D.W., Neal Stewart C.Jr., Wong G.K., Bowman J.L. 2014. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor. — Mol Phylogenet Evol. 81: 159–173. https://doi.org/10.1016/j.ympev.2014.06.017
  45. Foster A.S. 1938. Structure and growth of the shoot apex in Ginkgo biloba. — Bull. Torr. Club. 65(8): 531–556. https://doi.org/10.2307/2480793
  46. Foster A.S. 1939. Structure and growth of the shoot apex of Cycas revoluta. — Am. J. Bot. 26(6): 372–385. https://doi.org/10.2307/2436837
  47. Foster A.S. 1943. Zonal structure and growth of the shoot apex in Microcycas calocoma (Miq.) A. DC. — Amer. J. Bot. 30(1): 56–73.
  48. Fouracre J.P., Harrison C.J. 2022. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. — Plant Physiol. 190(1): 100–112. https://doi.org/10.1093/plphys/kiac313
  49. Franceschi V.R., Ding B., Lucas W.J. 1994. Mechanism of plasmodesmata formation in characean algae in relation to evolution of intercellular communication in higher plants. — Planta. 192: 347–358. https://doi.org/10.1007/BF00198570
  50. Frangedakis E., Marron A.O., Waller M., Neubauer A., Tse S.W., Yue Y., Ruaud S., Waser L., Sakakibara K., Szövényi P. 2023. What can hornworts teach us? — Front. Plant Sci. 14: 1108027. https://doi.org/10.3389/fpls.2023.1108027
  51. Frank M.H., Edwards M.B., Schultz E.R., McKain M.R., Fei Z., Sørensen I., Rose J.K., Scanlon M.J. 2015. Dissecting the molecular signatures of apical cell-type shoot meristems from two ancient land plant lineages. — New Phytol. 207(3): 893–904. https://doi.org/10.1111/nph.13407
  52. Friedman W.E., Moore R.C., Purugganan M.D. 2004. The evolution of plant development. — Amer. J. Bot. 91: 1726–1741. https://doi.org/10.3732/ajb.91.10.1726
  53. Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426(6963): 147–53. https://doi.org/10.1038/nature02085
  54. PMID: 14614497.
  55. Gifford E.M., Foster A.S. 1989. Morphology and Evolution of Vascular Plants. New York. 626 p.
  56. Gola E. 2014. Dichotomous branching: the plant form and integrity upon the apical meristem bifurcation. Front. Plant Sci. 5. https://doi.org/10.3389/fpls.2014.00263
  57. Gola E.M., Jernstedt J.A. 2011. Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices. — Int. J. Plant. Sci. 172: 847–855. https://doi.org/10.1086/660878
  58. Golub S.J., Wetmore R.H. 1948a. Studies of development in the vegetative shoot of Equisetum arvense L. I. the shoot apex. — Am. J. Bot. 35: 755–767. https://doi.org/10.1002/j.1537-2197.1948.tb08146.x
  59. Golub S.J., Wetmore R.H. 1948b. Studies of development in the vegetative shoot of Equisetum arvense L. II. the mature shoot. — Am. J. Bot. 35: 767–781. https://doi.org/10.1002/j.1537-2197.1948.tb08147.x
  60. Gunadi A., Li F.W., Van Eck J. 2022. Accelerating gametophytic growth in the model hornwort Anthoceros agrestis. — Appl. Plant Sci. 10(2): e11460. https://doi.org/10.1002/aps3.11460
  61. Guo M., Thomas J., Collins G., Timmermans M.C.P. 2008. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. — The Plant Cell. 20: 48–58. https://doi.org/10.1105/tpc.107.056127
  62. Harris B.J., Clark J.W., Schrempf D., Szöllősi G.J., Donoghue P., Hetherington A.M., Williams T.A. 2022. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. — Nat. Ecol. Evol. 6: 1634–1643. https://doi.org/10.1038/s41559-022-01885-x
  63. Harrison C.J. 2017a. Development and genetics in the evolution of land plant body plans. — Phil. Trans. R. Soc. B. Biol. Sci. 372:20150490. https://doi.org/10.1098/rstb.2015.0490
  64. Harrison C.J. 2017b. Auxin transport in the evolution of branching forms. — New Phytol. 215: 545–551. https://doi.org/10.1111/nph.14333
  65. Harrison C.J., Corley S.B., Moylan E.C., Alexander D.L., Scotland R.W., Langdale J.A. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. — Nature. 434(7032): 509–514. https://doi.org/10.1038/nature03410
  66. Harrison C.J., Langdale J.A. 2010. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 171(6): 690–692. https://doi.org/10.1086/653134
  67. Harrison C.J., Morris J.L. 2018. The origin and early evolution of vascular plant shoots and leaves. — Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373(1739): 20160496. https://doi.org/10.1098/rstb.2016.0496
  68. Harrison C.J., Rezvani M., Langdale J.A. 2007. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134, 881–889. https://doi.org/10.1242/dev.001008
  69. Harrison C.J., Roeder A., Meyerowitz E.M., Langdale J.A. 2009. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr. Biol. 19: 461–471. https://doi.org/10.1016/j.cub.2009.02.050
  70. Hata Y., Kyozuka J. 2021. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. — Plant Mol. Biol. 107(4–5): 213–225. https://doi.org/10.1007/s11103-021-01126-y
  71. Hay A., Barkoulas M., Tsiantis M. 2004. PINning down the connections: transcription factors and hormones in leaf morphogenesis. — Curr Opin Plant Biol. 7(5): 575–581. https://doi.org/10.1016/j.pbi.2004.07.007
  72. Hedman H., Zhu T., von Arnold S., Sohlberg J. 2013. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. — BMC Plant Biol. 13: 89. https://doi.org/10.1186/1471-2229-13-89
  73. Heinlein M., Epel B.L. 2004. Macromolecular transport and signaling through plasmodesmata. — Int. Rev. Cytol. 235: 93–164. https://doi.org/10.1016/S0074-7696(04)35003-5
  74. Hernández-Hernández B., Tapia-López R., Ambrose B.A., Vasco A. 2021. R2R3-MYB gene evolution in plants, incorporating ferns into the story. — Int. J. Plant Sci. 182: 1–8. https://doi.org/10.1086/710579
  75. Hirakawa Y. 2022. Evolution of meristem zonation by CLE gene duplication in land plants. — Nature Plants. 8(7): 735–740. https://doi.org/10.1038/s41477-022-01199-7
  76. Hirakawa Y., Uchida N., Yamaguchi Y.L., Tabata R., Ishida S., Ishizaki K., Nishihama R., Kohchi T., Sawa S., Bowman J.L. 2019. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. — PLoS Genet. 15: e1007997. https://doi.org/10.1371/journal.pgen.1007997
  77. Hirakawa Y., Fujimoto T., Ishida S., Uchida N., Sawa S., Kiyosue T., Ishizaki K., Nishihama R., Kohchi T., Bowman J.L. 2020. Induction of multichotomous branching by CLAVATA peptide in Marchantia polymorpha. Current biology: CB. 30(19): 3833–3840.e4. https://doi.org/10.1016/j.cub.2020.07.016
  78. Hisanaga T., Fujimoto S., Cui Y., Sato K., Sano R., Yamaoka S., Kohchi T., Berger F., Nakajima K. 2021. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants. — Elife. 10: e57090. https://doi.org/10.7554/eLife.57090
  79. Hjortswang H.I., Sundås-Larsson A., Bharathan G., Bozhkov P.V., Arnold S., Vahala T. 2002. KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. — Plant Physiol. Biochem. 40: 837–843. https://doi.org/10.1016/S0981-9428(02)01445-6
  80. Hou G., Hill J.P. 2002. Heteroblastic root development in Ceratopteris richardii (Parkeriaceae). — Int. J. Plant Sci. 163: 341–351. https://doi.org/10.1086/339156
  81. Imaichi R. 2013. A new classification of the gametophyte development of homosporous ferns, focusing on meristem behaviour. — Fern Gaz. 19 (5): 141–156.
  82. Imaichi R., Hiratsuka R. 2007. Evolution of shoot apical meristem structures in vascular plants with respect to plasmodesmatal network. — Am.J. Bot. 94: 1911–1921. https://doi.org/10.3732/ajb.94.12.1911
  83. Jackson D., Veit B., Hake S. 1994. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. — Development. 120(2): 405–413. https://doi.org/10.1242/dev.120.2.405
  84. Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M. 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. — Current biology: CB. 15(17): 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023
  85. Jones C.S., Drinnan A.N. 2009. The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. — Int. J. Plant Sci. 170: 1009–1018.
  86. Kato M., Akiyama H. 2005. Interpolation hypothesis for origin of the vegetative sporophyte of land plants. — TAXON. 54(2): 443–450. https://doi.org/10.2307/25065371
  87. Kawai J., Tanabe Y., Soma S., Ito M. 2010. Class 1 KNOX gene expression supports the Selaginella rhizophore concept. — J. Plant Biol. 53: 268–274. https://doi.org/10.1007/s12374-010-9113-z
  88. Kidston R., Lang W.H. 1920. On Old Red Sandstone plants showing structure, from the Rhynie Chert Bed, Aberdeenshire. Part III. Asteroxylon mackiei, Kidston and Lang. — Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 52(03): 643–680.
  89. Kim J.-Y., Yuan Z., Jackson D. 2003. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. — Development. 130: 4351–4362. https://doi.org/10.1242/dev.00618
  90. Kofuji R., Hasebe M. 2014. Eight types of stem cells in the life cycle of the moss Physcomitrella patens. — Curr. Opin. Plant Biol. 17: 13–21. https://doi.org/10.1016/j.pbi.2013.10.007
  91. Kohchi T., Yamato K.T., Ishizaki K., Yamaoka S., Nishihama R. 2021. Development and molecular genetics of Marchantia polymorpha. — Annu. Rev. Plant Biol. 72: 677–702. https://doi.org/10.1146/annurev-arplant-082520-094256
  92. Kurepa J., Smalle J.A. 2022. Auxin/Cytokinin antagonistic control of the shoot/root growth ratio and Its relevance for adaptation to drought and nutrient deficiency stresses. — Int. J. Mol. Sci. 23(4): 1933. https://doi.org/10.3390/ijms23041933
  93. Kuznetsova K., Efremova E., Dodueva I., Lebedeva M., Lutova L. 2023. Functional modules in the meristems: “tinkering” in action. — Plants (Basel, Switzerland). 12(20): 3661. https://doi.org/10.3390/plants12203661
  94. Larsson E., Sitbon F., Ljung K., von Arnold S. 2007. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. — New Phytol. 177(2): 356–366. https://doi.org/10.1111/j.1469-8137.2007.02289.x
  95. Larsson E., Sitbon F., von Arnold S. 2012. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). — Plant Cell. Rep. 31(6): 1053–1060. https://doi.org/10.1007/s00299-011-1224-6
  96. Li F.W., Nishiyama T., Waller M., Frangedakis E., Keller J., Li Z., …, Szövényi P. 2020. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. — Nat. Plants. 6: 259–272. https://doi.org/10.1038/s41477-020-0618-2
  97. Ligrone R., Duckett J.G. 1998. Development of the leafy shoot in Sphagnum (Bryophyta) involves the activity of both apical and subapical meristems. — New Phytol. 140(3): 581–595. https://doi.org/10.1111/j.1469-8137.1998.00297.x
  98. Long J.A., Moan E.I., Medford J.I., Barton, M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. — Nature. 379: 66–69. https://doi.org/10.1038/379066a0
  99. Ma Y., Steeves T.A. 1992. Auxin effects on vascular differentiation in ostrich fern. — Annals of Botany. 70(3): 277–282. https://doi.org/10.1093/oxfordjournals.aob.a088470
  100. Maksimova (Evkaikina) A.I., Berke L., Salgado M.G., Klimova E.A., Pawlowski K., Romanova M.A., Voitsekhovskaja O.V. 2021. What can the phylogeny of class I KNOX genes and their expression patterns in land plants tell us about the evolution of shoot development? — Bot. J. Linn. Soc. 195: 254–280. https://doi.org/10.1093/botlinnean/boaa088
  101. Manuela D., Xu M. 2020. Juvenile leaves or adult leaves: determinants for vegetative phase change in flowering plants. — Int. J. Mol. Sci. 21(24): 9753. https://doi.org/10.3390/ijms21249753
  102. Mazur E., Kulik I., Hajný J., Friml J. 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. — New Phytol. 226(5): 1375–1383. https://doi.org/10.1111/nph.16446
  103. McConnell J.R., Emery J., Eshed Y., Bao N., Bowman J., Barton M.K. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. — Nature. 411: 709–713. https://doi.org/10.1038/35079635
  104. Mishler B.D., Churchill S.P. 1984. A cladistic approach to the phylogeny of the “Bryophytes”. — Brittonia. 36: 406–424. https://doi.org/10.2307/2806602
  105. Miwa H., Kinoshita A., Fukuda H., Sawa S. 2009. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. — J. Plant Res. 122(1): 31–39. https://doi.org/10.1007/s10265-008-0207-3
  106. Morris J.L., Puttick M.N., Clark J.W., Edwards D., Kenrick P., Pressel S. et al. 2018. The timescale of early land plant evolution. — Proc. Natl. Acad. Sci. USA. 115: 2274–2283. https://doi.org/10.1073/pnas.1719588115
  107. Nakata M., Matsumoto N., Tsugeki R., Rikirsch E., Laux T., Okada K. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24: 519–535. https://doi.org/10.1105/tpc.111.092858
  108. Nardmann J., Reisewitz P., Werr W. 2009. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. — Mol. Biol. Evol. 26(8): 1745–1755. https://doi.org/10.1093/molbev/msp084
  109. Nardmann J., Werr W. 2012. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. — Plant Mol. Biol. 78: 123–134. https://doi.org/10.1007/s11103-011-9851-4
  110. Nardmann J., Werr W. 2013. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. — New Phytol. 199(4): 1081–1092. https://doi.org/10.1111/nph.12343
  111. Naumenko A.N., Romanova M.A. 2008. Apical morphogenesis of Psilotum nudum (Psilotaceae) and Botrychium lunaria (Ophioglossaceae). — Vestn. SPb Univ. 3(2): 15–27 (In Russ.).
  112. Nemec-Venza Z., Madden C., Stewart A., Liu W., Novák O., Pěnčík A., Cuming A.C., Kamisugi Y., Harrison C.J. 2022. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss. — New Phytol. 234(1): 149–163. https://doi.org/10.1111/nph.17969
  113. Newman I.V. 1965. Pattern in the meristems of vascular plants: III. Pursuing the patterns in the apical meristem where no cell is a permanent cell. — J. Linn. Soc. Lond. Bot. 59: 185–214. https://doi.org/10.1111/j.1095–8339.1965.tb00057.x
  114. Nimchuk Z.L., Tarr P.T., Ohno C., Qu X., Meyerowitz E.M. 2011. Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. — Curr. Biol. 21: 345–352. https://doi.org/10.1016/j.cub.2011.01.039
  115. Palovaara J., Hallberg H., Stasolla C., Luit B., Hakman I. 2010. Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues. — Tree physiology. 30(4): 479–489. https://doi.org/10.1093/treephys/tpp126
  116. Paolillo D.J. 1963. The developmental anatomy of Isoetes. Urbana. 130 p.
  117. Pham T., Sinha N. 2003. Role of KNOX genes in shoot development of Welwitschia mirabilis. — Int. J. Plant Sci. 164(3): 333–343. https://doi.org/10.1086/374189
  118. Pi L., Aichinger E., van der Graaff E., Llavata-Peris C.I., Weijers D., Hennig L., Groot E., Laux T. 2015. Organizer-derived WOX5 signal maintains root columella stem sells through chromatin-mediated repression of CDF4 expression. — Dev. Cell. 33(5): 576–588. https://doi.org/10.1016/j.devcel.2015.04.024
  119. Plackett A., Di Stillio V.S., Langdale J.A. 2015. Ferns: the missing link in shoot evolution and development. — Front. Plant Sci. 6: 972. https://doi.org/10.3389/fpls.2015.00972
  120. Prigge M., Clark S. 2006. Evolution of the class III HD-Zip gene family in land plants. — Evol Dev. 8(4): 350–361. https://doi.org/10.1111/j.1525-142X.2006.00107.x
  121. Puttick M.N., Morris J.L., Williams T.A., Cox C.J., Edwards D., Kenrick P., Pressel S., Wellman C.H., Schneider H., Pisani D., Donoghue P.C.J. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. — Curr Biol. 28(5): 733–745.e2. https://doi.org/0.1016/j.cub.2018.01.063
  122. Reinhardt D., Pesce E.R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C. 2003. Regulation of phyllotaxis by polar auxin transport. — Nature. 426: 255–260. https://doi.org/10.1038/nature02081
  123. Richards S., Wink R.H., Simon R. 2015. Mathematical modelling of WOX5- and CLE40-mediated columella stem cell homeostasis in Arabidopsis. — J. of Exp. B. 66: 5375–5384. https://doi.org/10.1093/jxb/erv257
  124. Romani F., Reinheimer R., Florent S.N., Bowman J.L., Moreno J.E. 2018. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land. — New Phytol. 219(1): 408–421. https://doi.org/10.1111/nph.15133
  125. Romanova M.A., Borisovskaya G.M. 2004. Principles of structural organization of the vegetative body in ferns: ontogenetic approach. — Bot. Zhurn. 89 (5): 705–717 (In Russ.).
  126. Romanova M.A., Domashkina V.V., Bortnikova N.A. 2023. Structural and regulatory aspects of morphogenesis in Equisetum sylvaticum and Equisetum fluviatile and the issue of homology of leaves of horsetails and other ferns. — Bot. Zhurn. 108(8): 785–820.
  127. Romanova M., Jernstedt J. 2005. Morphogenetic events in the Ceratopteris richardii shoot apex. — Fern Gaz. 17: 204.
  128. Romanova M.A., Naumenko A.N., Evkaikina A.I. 2010. Peculiarities of apical morphogenesis in different taxa of non-seed plants. — Vestn. of SPb Univ. 3(3): 29–41 (In Russ.).
  129. Romanova M.A., Yakovleva O.V., Maximova A.I., Ivanova A.N., Domashkina V.V. 2022. Structure of shoot apical meristems and peculiarities of ultrastructure of their cells in lycophytes and ferns. — Bot. Zhurn. 107(9): 65–85 (In Russ.).
  130. Romanova M.A., Domashkina V.V., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2023. All together now: cellular and molecular aspects of leaf development in lycophytes, ferns, and seed plants. — Front. Ecol. Evol. 11: 1097115. https://doi.org/10.3389/fevo.2023.1097115
  131. Romanova M.A., Maksimova A.I., Pawlowski K., Voitsekhovskaja O.V. 2021. YABBY genes in the development and evolution of land plants. — Int. J. Mol. Sci. 22(8): 4139. https://doi.org/10.3390/ijms22084139
  132. Sakakibara K., Nishiyama T., Deguchi H., Hasebe M. 2008. Class 1 KNOX genes are not involved in shoot development in the moss Physcomitrella patens but do function in sporophyte development. 10(5): 555–566. — Evol. Dev. 10(5): 555–566. https://doi.org/10.1111/j.1525-142X.2008.00271.x
  133. Sakakibara K., Reisewitz P., Aoyama T., Friedrich T., Ando S., Sato Y. 2014. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. — Development. 141(8): 1660–1670. https://doi.org/10.1242/dev.097444
  134. Sanders H.L, Langdale J.A. 2013. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. — New Phytol. 198(2): 419–428. https://doi.org/10.1111/nph.12183
  135. Sano R., Juárez C.M., Hass B., Sakakibara K., Ito M., Banks J.A., Hasebe M. 2005. KNOX homeobox genes potentially have similar function in both diploid unicellular and multicellular meristems, but not in haploid meristems. — Evol. Dev. 7: 69–78. https://doi.org/10.1111/j.1525–142X.2005.05008.x
  136. Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Scheres B., Heidstra R., Laux T. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. — Nature. 446: 811–814. https://doi.org/10.1038/nature05703
  137. Sawa S., Watanabe K., Goto K., Kanaya E., Morita E.H., Okada K. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. — Genes Dev. 13(3): 1079–1088. https://doi.org/10.1101/gad.13.9.1079
  138. Schlegel J., Denay G., Wink R., Pinto K.G., Stahl Y., Schmid J., Blümke P., Simon R.G. 2021. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. — eLife 10. e70934. https://doi.org/10.7554/eLife
  139. Schoof H., Lenhard M., Haecker A., Mayer K.F., Jürgens G., Laux T. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. — Cell. 100(6): 635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
  140. Shi B., Vernoux T. 2019. Patterning at the shoot apical meristem and phyllotaxis. — Curr. Top. Dev. Biol. 131: 81–107. https://doi.org/10.1016/bs.ctdb.2018.10.003
  141. Siegfried K.R., Eshed Y., Baum S.F., Otsuga D., Drews G.N., Bowman J.L. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126(18): 4117–4128. https://doi.org/10.1242/dev.126.18.4117
  142. Skupchenko V.B., Ladanova N.V. 1984. The development of Picea obovata (Pinaceae) needles. — Bot. Zhurn. 69(7): 203–206 (In Russ.).
  143. Snipes S.A., Rodriguez K., DeVries A.E., Miyawaki K.N., Perales M., Xie M., Reddy G.V. 2018. Cytokinin stabilizes WUSCHEL by acting on the protein domains required for nuclear enrichment and transcription. — PLoS genet. 14(4): e1007351. https://doi.org/10.1371/journal.pgen.1007351
  144. Spencer V., Venza Z.N., Harrison C.J. 2021. What can lycophytes teach us about plant evolution and development? Modern perspectives on an ancient lineage. Evol. Dev. 23: 174–196. https://doi.org/10.1111/ede.12350
  145. Steeves T.A., Sussex I.M. 1989. Patterns in plant development. Cambridge University Press. 15: 388 p.
  146. Sterling J.S. 1984. The structure of the apical meristem of Isoetes engelmannii, I. riparia and I. macrospora (Isoetales). — Bot. J. Linn. Soc. 89(1): 77–84.
  147. https://doi.org/10.1111/j.1095–8339.1984.tb01001.x
  148. Stevenson D.W. 1976. The cytohistological and cytohistochemical zonation of the shoot apex of Botrychium multifidum. — Am.J. Bot. 63(6): 852–856. https://doi.org/10.2307/2442045
  149. Sundås-Larsson A., Svenson M., Liao H., Engström P. 1998. A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. — Proc. Natl. Acad. Sci. USA. 95(25): 15118–15122. https://doi.org/10.1073/pnas.95.25.15118
  150. Suzuki H., Kato H., Iwano M., Nishihama R. 2023. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. — The Plant Cell. 35(3): 1058–1075. https://doi.org/10.1093/plcell/koac367
  151. Suzuki H., Kohchi T., Nishihama R. 2021. Auxin biology in bryophyta: a simple platform with versatile functions. — Cold Spring Harb Perspect Biol. 13(3): a040055. https://doi.org/10.1101/cshperspect.a040055
  152. Swentowsky K.W. 2024. A bushel of WUSCHEL is too much: uncovering the role of cytokinin cis-regulatory elements in the maize WUSCHEL promoter. — Plant Physiol. 194(4): 2183–2184. https://doi.org/10.1093/plphys/kiae016
  153. Szövényi P., Waller M., Kirbis A. 2019. Evolution of the plant body plan. — Curr Top Dev Biol. 131: 1–34. https://doi.org/10.1016/bs.ctdb.2018.11.005
  154. Tilney L.G., Cooke T.J., Connelly P.S., Tilney M.S. 1990. The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. — Development. 110(4): 1209–1221. https://doi.org/10.1242/dev.110.4.1209
  155. Timmermans M.C., Hudson A., Becraft P.W., Nelson T. 1999. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. — Science. 284: 151–153. https://doi.org/10.1126/science.284.5411.151
  156. Tomescu A.M.F., Escapa I.H., Rothwell G.W., Elgorriaga A., Cúneo N.R. 2017. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. — Ann. Bot. 119: 489–505. https://doi.org/10.1093/aob/mcw273
  157. Tomescu A.M.F., Wyatt S.E., Hasebe M., Rothwell G.R. 2014. Early evolution of the vascular plant body plan — the missing mechanisms. — Curr. Opin. Plant Biol. 17(1): 126–136. https://doi.org/10.1016/j.pbi.2013.11.016
  158. Tooke F., Battey N. 2003. Models of shoot apical meristem function. — New Phytol. 159(1): 37–52. https://doi.org/10.1046/j.1469-8137.2003.00803.x
  159. Tsiantis M., Schneeberger R., Golz J.F., Freeling M., Langdale J.A. 1999. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. — Science. 284: 154–156. https://doi.org/10.1126/science.284.5411.154
  160. Tsuda K., Ito Y., Sato Y., Kurata N. 2011. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. — The Plant cell. 23(12): 4368–4381. https://doi.org/10.1105/tpc.111.090050
  161. Tsukaya H. 2021. The leaf meristem enigma: the relationship between the plate meristem and the marginal meristem. Plant Cell 33: 3194–3206. https://doi.org/10.1093/plcell/koab190
  162. Vasco A., Ambrose B.A. 2020. Simple and divided leaves in ferns: exploring the genetic basis for leaf morphology differences in the genus Elaphoglossum (Dryopteridaceae). — Int. J. Mol. Sci. 21(15): 5180. https://doi.org/10.3390/ijms21155180
  163. Vasco A., Moran R.C., Ambrose B.A. 2013. The evolution, morphology and development of fern leaves. — Front Plant Sci. 4: 345. https://doi.org/10.1111/j.1469-185X.1941.tb01096.x
  164. Vasco A., Smalls T.L., Graham S.W., Cooper E.D., Wong G.K., Stevenson D.W., Moran R.C., Ambrose B.A. 2016. Challenging the paradigms of leaf evolution: class III HD-Zips in ferns and lycophytes. — New Phytol. 212(3): 745–758. https://doi.org/10.1111/nph.14075
  165. Vernoux T., Besnard F., Traas J. 2010. Auxin at the shoot apical meristem. — Cold Spring Harb. Perspecti Biol. 2(4): a001487. https://doi.org/10.1101/cshperspect.a001487
  166. Wada M. 2008. Photoresponses in fern gametophytes. — Biology and Evolution of Ferns and Lycophytes (1st edn.). Cambridge. P. 3–48.
  167. Waites R., Selvadurai H.R., Oliver I.R., Hudson A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. — Cell. 93(5): 779–789. https://doi.org/10.1016/s0092-8674(00)81439-7
  168. Wan T., Liu Z.-M., Li L.-F., Leitch A.R., Leitch I.J., Lohaus R., …, Wang X.-M. 2018. A genome for gnetophytes and early evolution of seed plants. — Nature Plants. 4: 82–89. https://doi.org/10.1038/s41477-017-0097-2
  169. Wardlaw C.W. 1956. Experimental and analytical studies of pteridophytes. XXXIV. On the shoot apex of the bird’s nest fern, Asplenium nidus L. — Ann. Bot. N.S. 20: 363–374.
  170. Wardlaw C.W. 1963. Experimental studies of the sporophytes of ferns. — J. Linn. Soc., Bot. 8: 385–400.
  171. Wegner L., Ehlers K. 2024. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. — Planta. 260(2): 45. https://doi.org/10.1007/s00425-024-04476-1
  172. Whitewoods C.D. 2021. Evolution of CLE peptide signalling. — Semin. Cell Dev. Biol. 109: 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
  173. Whitewoods C.D., Cammarata J., Venza Z.N., Sang S., Crook A.D., Harrison C.J. 2018. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. — Curr Biol.: CB, 30(13): 2645–2648. https://doi.org/10.1016/j.cub.2020.06.015
  174. Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N. et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. — Proc. Natl. Acad. Sci. USA. 111(45): E4859—E4868. https://doi.org/10.1073/pnas.1323926111
  175. Winther J.L., Friedman W.E. 2008. Arbuscular mycorrhizal associations in Lycopodiaceae. — New Phytol. 177(3): 790–801. https://doi.org/10.1111/j.1469-8137.2007.02276.x
  176. Withers K.A., Kvamme A., Youngstrom C.E., Yarvis R.M., Orpano R., Simons G.P., Irish E.E., Cheng C.L. 2023. Auxin involvement in Ceratopteris gametophyte meristem regeneration. — Int. J. Mol. Sci. 24(21): 15832. https://doi.org/10.3390/ijms242115832
  177. Wu C.C., Li F.W., Kramer E.M. 2019. Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. — PLoS One. 14(10): e0223521. https://doi.org/10.1371/journal.pone.0223521
  178. Wu X., Liu X., Zhang S., Zhou Y. 2023. Cell division and meristem dynamics in fern gametophytes. — Plants. 12(1): 209. https://doi.org/10.3390/plants12010209
  179. Yadav R.K., Perales M., Gruel J., Girke T., Jönsson H., Reddy G.V. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. — Genes. Dev. 25: 2025–2030. https://doi.org/10.1101/gad.17258511
  180. Yip H.K., Floyd S.K., Sakakibara K., Bowman J.L. 2016. Class III HD-Zip activity coordinates leaf development in Physcomitrella patens. — Dev. Biol. 419(1): 184–197. https://doi.org/10.1016/j.ydbio.2016.01.012
  181. Youngstrom C.E., Geadelmann L.F., Irish E.E., Cheng C.L. 2019. A fern WUSCHEL-RELATED HOMEOBOX gene functions in both gametophyte and sporophyte generations. — BMC Plant Biol. 19(1): 416. https://doi.org/10.1186/s12870-019-1991-8
  182. Youngstrom C.E., Withers K.A., Irish E.E., Cheng C.L. 2022. Vascular function of the T3/modern clade WUSCHEL-Related HOMEOBOX transcription factor genes predate apical meristem-maintenance function. — BMC plant biology. 22(1): 210. https://doi.org/10.1186/s12870-022-03590-0
  183. Zhang T.Q., Lian H., Zhou C.M., Xu L., Jiao Y., Wang J.W. 2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. — Plant Cell. 29(5): 1073–1087. https://doi.org/10.1105/tpc.16.00863
  184. Zumajo-Cardona C., Ambrose B.A. 2020. Phylogenetic analyses of key developmental genes provide insight into the complex evolution of seeds. Mol Phylogenet Evol. — 147: 106778. https://doi.org/10.1016/j.ympev.2020.106778
  185. Zumajo-Cardona C., Little D.P., Stevenson D., Ambrose B.A. 2021. Expression analyses in Ginkgo biloba provide new insights into the evolution and development of the seed. — Sci. Rep. 11(1): 21995. https://doi.org/10.1038/s41598-021-01483-0
  186. Zumajo-Cardona C., Vasco A., Ambrose B.A. 2019. The evolution of the KANADI gene family and leaf development in lycophytes and ferns. — Plants. 8(9): 313. https://doi.org/10.3390/plants809031

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic tree for higher plants and their structural and regulatory innovations. Placement of taxa is based on: Charophyta — Harrison, Morris (2018); bryophytes — Harris et al. (2022); pteridophytes — PPG I (2016); gymnosperms — Yang et al. (2022). Legend: “+” — presence, “–” — absence, “?” — no data, gmtph — gametophyte, sprph — sporophyte. For genes encoding WOX TFs, the affiliation to superclades or clades that are closest to the “organizer” of the apical meristem of flowering plants WUS is indicated. In each taxon, except for bryophytes, there are also representatives of the superclades more distant from WUS.

Download (537KB)
3. Fig. 2. Structure and regulation in the apical meristem of seed plants. Schematics of longitudinal sections of the apical meristem of sporophytes of Magnoliidae (A); Gnetidae (B), Pinidae (C). The allocation of zones is based on: Esau (1969), Steeves, Sussex (1989), Gifford, Foster (1989), Tsukaya (2021). Mapping of gene expression and auxin distribution is based on: angiosperms — Nakata et al. (2012), Nardmann, Werr (2013), Shi, Vernoux (2019); gymnosperms — Nardmann et al. (2009), Nardmann, Werr (2013), Finet et al. (2016), Wan et al. (2018), Bueno et al. (2021). AI / AIs — apical initial or initials; OC — organizing center; СМС — central mother cell zone; CZ — central zone; PZ — peripheral zone; P0—P3 — successive stages of development of leaf primordia and leaves; RM — rib meristem. Putative interactions between apical meristem regulators: arrows indicate positive regulation, bars indicate negative regulation. The apical initial or initials of the apical meristem and leaves are shown in different shades of pink, the organizing center and the central mother cell zone are in light brown, the outer tunica layer is shown as rectangles, the cells of the rib meristem are shown as dots, and the sites of auxin synthesis and basipetal transport are shown in green. Solid arrows indicate that information about the synthesis site and transport pathways of auxin is based on their visualization, and dotted lines indicate that they are based on indirect data. For the other captions and symbols see Fig. 1.

Download (342KB)
4. Fig. 3. Structure and regulation in the apical meristem of non-seed plants. Schematics of longitudinal sections of the apical meristem of fern sporophytes: Polypodiopsida (A), Equisetopsida (B); schematic of the Polypodiopsida gametophyte and its apical meristem (C); schematics of the apical meristem of lycophyte sporophytes: Selaginellales (D), Lycopodiales (E). The allocation of zones is based on: Stevenson (1976), Paolillo (1963), Romanova et al. (2010), Evkaikina et al. (2017), Romanova et al. (2022). Mapping of gene expression and auxin distribution is based on: ferns — Bharathan et al. (2002), Harrison et al. (2005), Sano et al. (2005), Nardmann, Werr (2012), Ambrose, Vasco (2016), Vasco et al. (2016), Zumajo-Cardona et al. (2019), Vasco, Ambrose (2020); lycophytes — Evkaikina et al. (2017), Spencer et al. (2021), Vasco et al. (2016). LAI / LAIs — leaf apical initial / initials; SI — surface initials; SSI — subsurface initials; CuZ — cup-zone; RAI — root apical initial; sp — spore; rz — rhizoid. SI are marked in pale pink, SSI are in light brown; dots indicate cells of the rib meristem and parenchymatous ridges around the AI in gametophyte. For the other captions and symbols see Figs. 1, 2.

Download (427KB)
5. Fig. 4. Structure and regulation of bryophyte meristems. Schematics of gametophytes and longitudinal sections of the apical meristems in Anthocerotophyta (A), Marchantiophyta (B); Bryophyta: protonema (C); gametophores (D) and schematics of sporophytes of Anthocerotophyta (E), Marchantiophyta (F), Bryophyta (G). Mapping of gene expression and auxin distribution is based on: Sakakibara et al. (2014), Yip et al. (2016), Youngstrom et al. (2019), Dierschke et al. (2021), Kochi et al. (2021), Fouracre, Harrison (2022), Nemec-Venza et al. (2022), Frangedakis et al. (2023). ptn — protonema, cln — caulonema, st — seta, ft — foot, im — intercalary meristem. For the other captions and symbols see Figs. 1–3.

Download (443KB)

Copyright (c) 2025 Russian Academy of Sciences