Gynoecium and ovule structure in Lysimachia vulgaris (Primulaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genesis of the syncarpous gynoecium (lysicarpous variation) and ovule in Lysimachia vulgaris is studied. The ovary is superior. The gynoecium is formed by 5 carpels, as evidenced by the presence of the remains of 5 septae between fused adjacent carpels on the wall of the ovary. It is characterized by a zonal structure, with the synascidiate zone being the most extensive. The distal part of the gynoecium is occupied by the asymplicate zone. The ovary region, which includes an upper narrow rounded sterile part of the placental column, can be considered as the symplicate zone. At the base of the gynoecium, a short gynophore is formed, which projects into the center of the basal part of the gynoecium. In the lower part, it does not fuse with the placental column, but in the middle and upper parts gynophore transforms into a columella with central-angular placentae around it. Ovules are formed on intrusive placentas and arranged in offset rows. In the eustele of the pedicel, a ring of 15 collateral vascular bundles appears, which enter the elements of the calyx, corolla, and androecium. In the central part, a plexus is arranged to innervate the gynoecium, with 5 bundles extending in the remnants of the gynoecium septae to the upper part of the style. In the very center, 7–10 bundles innervate the gynophore, extend into the placental column, and their branches extend into the placenta and ovules. The fruits are septal-loculicidal capsules. The dehiscence occurs through longitudinal fissures in the area of septal (almost reaching the base) and locular (only at the top) grooves.

The ovule is hemi-campylotropous, medionucellate, bitegmal, mesochalazal, sessile, with a hypostase and an integumentary tapetum. The mature seed is acuminate and curved at the micropylar and chalazal ends. A cellular endosperm and a straight dicotyledonous embryo are formed in it. The seed coat is formed by both integuments. During development, the endotesta, exotegmen and mesotegmen are destroyed. The exotesta, made up of elongated thick-walled cells, and the endotegmen, formed by thin-walled cells, are preserved. Tannins accumulate in the cells of both layers.

Full Text

Restricted Access

About the authors

I. I. Shamrov

Herzen State Pedagogical University of Russia; Komarov Botanical Institute of Russian Academy of Sciences

Author for correspondence.
Email: shamrov52@mail.ru
Russian Federation, Moika River Emb., 48, St. Petersburg, 191186; Prof. Popov Str., 2, St. Petersburg, 197022

G. M. Anisimova

Komarov Botanical Institute of Russian Academy of Sciences

Email: galina0353@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197022

E. A. Rushchina

Herzen State Pedagogical University of Russia

Email: elenaroza74@yandex.ru
Russian Federation, Moika River Emb., 48, St. Petersburg, 191186

References

  1. Akhalkatsi M., Gvaladze G., Taralashvili N. 1998. Embryology of Primula algida and Primula amoena (Primulaceae). – Bull. Georg. Acad. Sci. 157(1): 98–100.
  2. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. 2003. – Bot. J. Linn. Soc. 141 (4): 399–436. h ttps://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x.
  3. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. 2009. – Bot. J. Linn. Soc . 161 (2 ): 105–121 . h ttps://doi.org/ 10.1111/j.1095-8339.2009.00996.x .
  4. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. 2016. – Bot. J. Linn. Soc . 181(1 ): 1–20 . h ttps://doi.org/ 10.1111/boj.12385 . ..121.
  5. Anderberg A.A., Kelso S. 1996. Phylogenetic implications of endosperm cell wall morphology in Douglasia, Androsace and Vitaliana (Primulaceae). – Nord. J. Bot. 16(5): 481–486. h ttps://doi.org/10.1111/j.1756-1051.1996.tb00262.x
  6. Anderberg A.A., Manns U., Källersjö M. 2007. Phylogeny and floral evolution of the Lysimachieae (Ericales , Myrsinaceae) : evidence from ndhF sequence data. – Willdenowia 37: 407–421. h ttps://doi.org/10.3372/wi.37.37202.
  7. Bocquet G. 1959. The structure of the placental column in the genus Melandrium (Caryophyllaceae). – Phytomorphology. 9(3): 217–221.
  8. Campbell C.S., Famous N.C., Zuck M.G. 1986. Pollination biology of Primula laurentiana (Primulaceae) in Maine. – Rhodora. 88: 253–262.
  9. Carey G., Fraser L. 1932. The embryology and seedling development of Aegiceras majus Gaertn. – Proc. Linn. Soc. N S. 57(5/6): 341–360.
  10. Chen F.H. 1940. A study of the seeds of genus Primula with references to the criteria of sections. – Bull. Fan. Mem. Inst. Biol. Ser. Bot. 10(2): 69–82.
  11. Chen F.-H., Hu C.-M. 1979. Taxonomic and phytogeographic studies on Chinese species of Lysimachia . – Acta Phytotax. Sin. 17(4): 21–53.
  12. Christenhusz M.J. M. ; Fay M.F. ; Chase M.W. 2017. "Primulaceae". – In: Plants of the world: An illustrated encyclopedia of vascular plants . Chicago: University of Chicago Press . 494 p.
  13. Corbineau F., Neveur N., Come D. 1989. Seed germination and seedling development in Cyclamen persicum. – Ann. Bot. 63(1): 87–96. h ttps://doi.org/ 10.1093/oxfordjournals.aob.a087732 .
  14. Cronquist A. 1981. An integrated system of classification of flowering plants. New York. 1262 p.
  15. D’ Arcy W.G. 1980. Theophrastaceae. – Ann. Missouri Bot. Gard. 67(4): 1047–1055.
  16. Dahlgren K.V.O. 1916. Zytologische und embryologische Studien über die Reihen Primulales und Plumbaginales. – Kongl. Sven. Vet. Akad. Handl. 56(4): 1–80.
  17. Dawson M.L. 1936. The floral morphology of the Polemoniaceae. Amer. J. Bot. 23(7): 501–511.
  18. Degtjareva G.V., Sokoloff D.D. 2012. Inflorescence morphology and flower development in Pinguicula alpina and P. vulgaris (Lentibulariaceae: Lamiales): monosymmetric flowers are always lateral and occurrence of early sympetaly. – Org. Divers. Evol. 12(2): 99–111. h ttps://doi.org/10.1007/s13127-012-0074-6.
  19. De Vos J.M., Hughes C.E., Schneeweiss G.M., Moore B.R., Conti E. 2014. Heterostyly accelerates diversification via reduced extinction in primroses. – Proc. Biol. Sci. 281(1784): 20140075. h ttps://doi.org/10.1098/rspb.2014.0075
  20. Dickson A. 1869. On the development of the flower of Pinguicula vulgaris L. with remarks on the embryos of P. vulgaris , P. grandiflora , P. lusitanica , P. caudata and Utricularia minor . – Transact. Royal Soc. Edinburgh. 25: 639–653.
  21. Dickson J. 1936. Studies in the floral anatomy. III. An interpretation of the gynaeceum in the Primulaceae . – Amer. J. Bot. 23 (6): 385–393.
  22. Douglas G.E. 1936. Studies in the vascular anatomy of the Primulaceae. – Amer. J. Bot. 23 (3): 199–212.
  23. Dowrick V.P.J. 1956. Heterostyly and homostyly in Primula obconica . – Heredity. 10: 219–236.
  24. Eames A. 1961. Morphology of angiosperms. New York-Toronto-London. 518 p.
  25. Eckardt T. 1954. Morphologische und systematische Auswertung der Placentation von Phytolaccaceen. – Ber. Deutsch. Bot. Gesellsch. 67(4): 113–128.
  26. Eckardt T. 1955. Nachweis der Blattbürtigkeit (“Phyllosporie”) grundständiger Samenanlagen bei Centrospermen. – Ber. Deutsch. Bot. Gesellsch. 68(4): 167–182.
  27. Ehrendorfer F. 1978. Spermatophyta, Samenpflanzen // Denffer von D., Ehrendorfer F., Mägdefrau K., Ziegler H. Lehrbuch der Botanik. Jena. S. 698–855.
  28. Eyde R.H. 1967. The peculiar gynoecial vasculature of Cornaceae and its systematic significance. – Phytomorphology. 17(1–4): 172–182.
  29. Gagechiladze M.I. 1993. Embryology of Primula bayernii (Primulaceae). – Bot Zhurn. 78(5): 93–96 (In Russ.).
  30. Goebel K. 1923. Organographie der Pflanzen insbesondere der Archegoniaten und Samenpflanzen. Jena. 3: 1821–2078.
  31. Goebel K. 1933. Organographie der Pflanzen. Jena. 460 S.
  32. Grisebach A. 1854. Grundriss der systematischen Botanik. Göttingen. 180 S.
  33. Hao G., Yuan Y.-M., Hu C.-M., Ge X.-J., Zhao N.-X. 2004. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trn L–F and nuclear ribosomal ITS sequences. – Mol. Phyl. and Evol. 31(1): 323–339. DOI: org/10.1016/s1055-7903(03)00286-0 .
  34. Hartl D. 1956. Die Beziehungen zwischen den Plazenten der Lentibulariaceen und Scrophulariaceen nebst einem Excurs über Spezialisationsrichtungen der Plazentation. – Beitr. Biol. Pflanzen. 32(3): 471–490.
  35. Hu C.M., Kelso S. 1996. Primulaceae. – In: Flora of China. Vol. 15. St. Louis. P. 80–99.
  36. Hutchinson J. 1959. The families of flowering plants. Oxford. Vol. 1. 510 p. Vol. 2. P. 511–792.
  37. Il-Chan Oh, Anderberg A.-L., Schönenberger J., Anderberg A.A. 2008. Comparative seed morphology and character evolution in the genus Lysimachia (Myrsinaceae) and related taxa. – Pl. Syst. Evol. 271: 177–197. h ttps://doi.org/10.1007/s00606-007-0625-z.
  38. Ivanina L.I. 1967. Gesneriaceae family. Carpological review. Leningrad. 126 p. (In Russ.).
  39. Johansen D.A. 1936. Morphology and embryology of Fouquieria. – Amer. J. Bot. 23(2): 95–99.
  40. Kagramanova F.V. 1972. Comparative-embryological investigation of primroses multicolored and Voronov. – In: Cytoembryological study of flora plants in Azerbajan. Baku. P. 82–92 (In Russ.).
  41. Källersjö M, Bergqvist G, Anderberg AA. 2000. Generic realignment in primuloid families of the Ericales s.l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. – Amer. J. Bot. 87: 1325–1341.
  42. Kamelina O.P. 2009. Systematic embryology of flowering plants. Dicotyledons. Barnaul. 501 p. (In Russ.).
  43. К amienski F. 1877. Vergleichende Untersuchungen über die Entwicklungsgeschichte der Utricularien. – Bot. Zeitung. 35(48): 761–776.
  44. Karpisonova К.Ф., Bochkova I. Yu., Vasilyeva I.V. et al. 2011. Cultuvated perennnials of Middle Russia. An illustrated guide. Moscow: Fiton. 432 p. (In Russ.).
  45. Karsten C. 1891. Ṻ ber die Mangrove-Vegetation im Malayischen Archipel. Eine morphologisch-biologische Studien. – Bibl. Bot. 22: 18–20.
  46. Khan R. 1954. A contribution to the embryology of Utricularia flexuosa Vahl. – Phytomorphology. 4(½): 80–117.
  47. Kimura M. 1980. A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. – J. Mol. Evol. 16: 111–120.
  48. Kume N. 1959. Morphologisch-physiologische Untersuchungen über die Entwicklung von Ardisia . Contrib. Biol. Labor. Kyoto Univ. 8: 1–37.
  49. Larson B.M.H., Barrett S.C.H. 1998. Reproductive biology of island and mainland populations of Primula mistassinica (Primulaceae) on lake Huron shorelines. – Can. J. Bot. 76(11): 1819–1827.
  50. Leinfellner W. 1951. Die U-formige Plazenta als der Plazentationstypus der Angiospermen. – Österr. Bot. Zeitschr. 98(3): 338–358.
  51. Leinfellner W. 1953 . Die basiläre Plazenta von Plumbago capensis . – Österr. Bot. Zeitschr. 100(3): 426–429.
  52. Lister G. 1884. On the origin of the placentas in the tribe Alsineae of the order Caryophylleae. – J. Linn. Soc. Bot. 20(130): 423–429.
  53. Liu T.J., Zhang S.Y., Wei L., Yan H.-F., Hao G., Ge X.J. 2023. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). – BMC Plant Biol. 23, article 359. h ttps://doi.org/10.1186/s12870-023-04363-z.
  54. Luetzelburg P. 1910. Beiträge zur Kenntnis der Utricular ien. – Flora. 145: 145–212.
  55. Mabberley D.J. 2009. Mabberley’s plant-book: a portable dictionary of plants, their classification and uses. Cambridge. 920 p.
  56. Maheshwari P. 1950. An introduction to the embryology of angiosperms. New York. 453 p.
  57. Mametyeva T.B. 1983a. Family Myrsinaceae. – In: Comparative embryology of flowering plants. Phytolaccaceae–Thymelaeaceae. Leningrad. P. 236–239.
  58. Mametyeva T.B. 1983b. Theophrastaceae family. – In: Comparative embryology of flowering plants. Phytolaccaceae–Thymelaeaceae. Leningrad. P. 239–241 (In Russ.).
  59. Mametyeva T.B. 1983c. Primulaceae family. – In: Comparative embryology of flowering plants. Phytolaccaceae – Thymelaeaceae. Leningrad. P. 241–243 (In Russ.).
  60. Martins L., Oberprieler C., Hellwig F.H. 2003. A phylogenetic analysis of Primulaceae s. l. based on internal transcribed spacer (ITS) DNA sequence data. – Plant Syst. Evol. 237(3): 75–85. h ttps://doi.org/10.1007/s00606-002-0258-1
  61. Mast A.R., Kelso S., Richards A.J., Lang D.J., Feller D.M.S., Conti E. 2001. Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. – Int. J. Plant Sci. 162(6): 1381–1400.
  62. Mauritzon J. 1936. Embryologische Angaben über Theophrastaceen. – Ark. Bot. 28(1): 1-4.
  63. Mez C. 1902. Myrsinaceae. – In: Engler A. Das Pflanzenreich. Berlin. 9: 1–437.
  64. Mez C. 1903. Theophrastaceae. – In: Engler A. Das Pflanzenreich. Berlin. 15: 1–48.
  65. Morozowska M., Czarna A., Kujawa M., Jagodzinski A.M. 2011. Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. – Plant Syst. Evol. 291: 159–172. doi: 10.1007/s00606-010-0374-2
  66. Morozowska M., Freitas M.F., De Luna B.N., De Toni K.L.G. 2020. Comparative micromorphology and anatomy of seeds and endocarps of selected Primulaceae and their systematic implications. – Plant Syst. Evol. 306: article 74: 1–19. h ttps://doi.org/10.1007/s00606-020-01699-z.
  67. Nasir Y.J. 1986. Seed studies in the Primula species (Primulaceae) found in Pakistan. – Wildenowia. 15(2): 475–483.
  68. Nemirovich-Danchenko E.N. 1992a. Theophrastaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 54–57 (In Russ.).
  69. Nemirovich-Danchenko E.N. 1992b. Myrsinaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 58–65 (In Russ.).
  70. Nemirovich-Danchenko E.N. 1992c. Primulaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 65–70 (In Russ.).
  71. Nemirov ich-Danchenko E.N. 1992d. Aegicerataceae family. – In: Anatomia seminum comparativa. Т.4. Dicotyledones. Dilleniidae. Petropoli. P. 71–77 (In Russ.).
  72. Otegui M., Maldonado S. 1998. Embryological features and bacterial transmission to gynoecium and ovule in Myrsine laetevirens (Myrsinaceae). – Acta Hot. Neerl. 47(2): 185–194.
  73. Otegui M., Lima C., Maldonado S., de Lederkremer R.M. 1999. Development of the endosperm of Myrsine laetevirens (Myrsinaceae). I. Cellularization and deposition of cell‐wall storage carbohydrates. – Int. J. Plant Sci. 160(3): 491–500.
  74. Pankow H. 1959. Histogenetische Untersuchungen an der Plazenta der Primulaceen. – Ber. Deutsch. Bot. Gesellsch. 72(3): 111–122.
  75. Pausheva Z.P. 1974. Practical work on plant cytology. Мoscow. 288 p. (In Russ.).
  76. Pushkareva L.A., Vinogradova G.Yu., Titova G.E. 2018. Reproductive biology of Pinguicula vulgaris (Lentibulariaceae) in Leningrad region. – Bot. Zhurn. 103(12): 1501–1513 (In Russ.).
  77. Raju M.V.S. 1953. Embryology of Anagallis pumila . – Proc. Indian Acad. Sci. B. 36: 34–42.
  78. Roth I. 1959. Histogenese und morphologische Deutung der Plazenta von Primula . – Flora. 148(2): 129–152.
  79. Sankara Rao K. 1971. Studies in Myrsinaceae. I. A contribution to the embryology of Maesa dubia Wall. – Proc. Ind. Acad. Sci. Ser. B. 75(4): 160–166.
  80. Savchenko M.I. 1973. Ovule morphology of angiosperms. Leningrad. 190 p. (In Russ.).
  81. Schlagorsky M . 1949. Das Bauprinzip des Primulaceengynözeums bei der Gattung Cyclamen. – Österr. Bot. Zeitschr. 96(3): 361–368.
  82. Schnarf K. 1931. Vergleichende Embryologie der Angiospermen. Berlin. 354 S.
  83. Shamrov I.I. 2008. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
  84. Shamrov I.I. 2013. Revisited: gynoecium types in angiosperm plants. – Bot. Zhurn. 98 (5): 568–595 (In Russ.).
  85. Shamrov I.I. 2018. Diversity and typification of ovules in flowering plants. – Wulfenia. 25: 81–109.
  86. Shamrov I.I. 2020. Structure and development of coenocarpous gynoecium in angiosperms. – Wulfenia. 27: 145–182.
  87. Shamrov I.I. 2022. Structural differentiation of the ovule and seed and its importance for reproduction in angiosperms. – Wulfenia. 29: 61–93.
  88. Shamrov I.I., Anisimova G.M. 1993. Ovule morphogenesis in Luzula pedemontana (Juncaceae): structural and histochemical investigation. – Bot. Zhurn. 78(4): 47–59 (In Russ.).
  89. Shamrov I.I., Anisimova G.M. & Kotelnikova N.S. 2012. Comparative analysis of gynoecium morphogenesis in Juncus filiformis and Luzula pedemontana (Juncaceae). – Bot. Zhurn. 97(8): 1–25 (In Russ.).
  90. Shamrov I.I. & Kotelnikova N.S. 2011. Peculiarities of gynoecium formation in Coccyganthe flos-cuculi (Caryophyllaceae). – Bot. Zhurn. 96(7): 826–850 (In Russ.).
  91. Ståhl B., Anderberg A.A. 2004. Maesaceae, Myrsinaceae. – In: Kubitzki K., ed. The families and genera of vascular plants. VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. Berlin: Springer. P. 255–257, 266–281.
  92. Subramanyam K., Narayana L.L. 1968. Floral anatomy and embryology of Primula floribunda Wall. – Phytomorphology. 18(1): 105–113.
  93. Takhtajan A.L. 1942. Strukturnye tipy ginezeya i platsentatsiya semesachatkov [Structural types of gynoecium and placentation of ovules]. – Izv. Arm. Filiala AN SSSR. 3-4(17-18): 91–112 (In Russ.).
  94. Takhtajan A.L. 1948. Morphological evolution of angiosperms. Moscow. 301 p. (In Russ.).
  95. Takhtajan A. 1959. Die Evolution der Angiospermen. Jena. 344 S.
  96. Takhtajan A.L. 1964. Bases of evolutionary morphology of angiosperms. Moscow-Leningrad. 236 p. (In Russ.).
  97. Takhtajan A.L. 1966. System and phylogeny of flowering plants. Leningrad. 611 p. (In Russ.).
  98. Takhtajan A.L. 1980. Outline of the classification of flowering plants (Magnoliophyta). – Bot. Rev. 46 (3): 225–359.
  99. Takhtajan A. 1997. Diversity and classification of flowering plants. New York. 643 p.
  100. Takhtajan A. 2009. Flowering plants. Springer. 871 p.
  101. Thomson B.F. 1942. The floral morphology of the Caryophyllaceae. – Amer. J. Bot. 29(4): 333–349.
  102. Troll W. 1928. Zur Auffassung des parakarpen Gynaeceums und des coenokarpen Gynaeceums überhaupt. – Planta. 6(2): 255–276.
  103. Troll W. 1957. Praktische Einführung in die Pflanzenmorphologie. Jena. 420 S.
  104. Trusov N.A. 2010. Morphological and anatomical structure of fruits of representatives of Сelastraceae R. Br. Family in connection with their oil content: Avtoref. kand. Bot. Sci. Moscow. 20 p.
  105. Valentine D.H. 1961. Evolution in the genus Primula . – In: A Darwin centenary. Ed. By Wanstall P.J. Arbroath. P. 71–87.
  106. Van Tieghem P. 1868. Recherches sur la structure du pistil et sur l’anatomie comparée de la fleur. Paris. 261 p.
  107. Veselova T.D. 1991. About morphological nature of obturator in Caryophyllceae. – Biol. Sci. 2: 93–103.
  108. Veselova T.D., Timonin A.K. 2008. Development of female generative sphere in Pleuropetalum darwinii Hook. F. (Caryophyllidae). – Bull. MOIP. Sect. Biol. 113(4): 33–39.
  109. Veselova T.D., Timonin A.C. 2009. Pleuropetalum Hook.f. is still an anomalous member of Amaranthaceae Juss. An embryological evidence. – Wulfenia. 16: 99–116.
  110. Wendelbo P. 1961. Studies in Primulaceae III. On the genera related to Primula with special reference to their pollen morphology. – Arb. Univ. Bergen Mat. Nat. 19: 1–31.
  111. Woodcock E.F. 1933. Seed studies in Cyclamen persicum Mill. – Pap. Michigan Acad. Sci., Arts and Letters. 17: 135–147.
  112. Woodel S.R.I. 1960. Studies in british primulas. VII. Development of normal seed and hybrid seed from reciprocal crosses between P. vulgaris Huds. and P. veris L. – New Phytol. 59 (3): 302–313.
  113. Yankova-Tsvetkova E., Yurukova-Grancharova P., Avena I., Zhelev P. 2021. On the reproductive potential in Primula veris L. (Primulaceae): embryological features, pollen and seed viability, genetic diversity. – Plants. 10(11), article 2296: 1–16. h ttps://doi.org/ 10.3390/plants10112296 .

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The structure of the inflorescence, flower and the gynophore in Lysimachia vulgaris ( 4–6 – longitudinal sections). 1, 3 – arrangement of flowers on the plant; 2 – flower structure; 4–6 : gynophore at the base of the gynoecium during the formation of ovules ( 4, 5 ) and after pollination ( 6 ). g – gynoecium, gn – gynophore, ov – ovule, p – petal, pl – placenta, s – sepal, st – stamen. Scale bars , µ m : 1, 3 – 500, 2 – 1000, 4–6 – 100.

Download (679KB)
3. Fig. 2. Gynoecium structure during differentiation of placentae in Lysimachia vulgaris (transverse sections) . 1 – the structure of a developing flower bud, in its lower part all elements are combined into one structure; 2 – higher up, the flower elements begin to separate; 3–7 – the first signs appear of differentiation of the ovary with placentary column ( 2–4 ), the style with a channel ( 5, 6 ), and stigma lobes ( 7 ). an – anther, g v b – gynoecium vascular bundle, or – ovary, pl c – placentary column, p v b – petal vascular bundle, sg – stigma, sl – style, sl с – style channel, st v b – stamen vascular bundle, s v b – sepal vascular bundle. Scale bars , µ m : 100.

Download (245KB)
4. Fig. 3. Gynoecium structure during formation of ovules in Lysimachia vulgaris ( 1 – longitudinal sections, 2–9 – transverse sections) . 1 – differentiation of the ovary, at the base of which a gynophore is formed; 2 – structure of the pedicel eustele: along the periphery, a ring is formed of 15 collateral vascular bundles entering to the elements of the calyx, corolla, and androecium; in the central part, a network of bundles is arranged to innervate the gynoecium and gynophore; 3 – in the lower part of the flower bud, all elements are combined into one structure; 4 – placental column on the intrusive placentae (external and internal) of which the ovules are formed, the gynophore is located in the center, on the wall of the ovary there are the remains of 5 septa between fused adjacent carpels; 5–9 – structure of the style ( 5–8 ) and stigma ( 9 ). g – gynoecium, g v b – gynoecium vascular bundle, gn – gynophore, i ov – inner ovule, o ov – outer ovule, p v b – petal vascular bundle, sg – stigma, sl – style, sl с – style channel, sp – septum, sp v b – septal vascular bundle, st v b – stamen vascular bundle, s v b – sepal vascular bundle. Scale bars , µ m : 100.

Download (281KB)
5. Fig. 4. Gynoecium structure during formation of ovules in Lysimachia vulgaris ( 1 – longitudinal sections, 2–10 – transverse sections) . 1 – structure of flower elements, formation of the ovary, style, stigma, stamen filaments and anthers, the gynophore becomes more distinct; 2 – in the lower part of the flower, the elements of the perianth, androecium and the ovary wall are united at the base, the gynophore in its free part retains a rounded shape; 3–5 – the gynophore fuses with the base of the placental column and continues into the columella; 6–9 – style structure; 10 – stigma structure. cm – columella, g – gynoecium, gn – gynophore, ov – ovule, p v b – petal vascular bundle, sg – stigma, sl – style, sl с – style channel, sp – septum, sp v b – septal vascular bundle, st – stamen, st v b – stamen vascular bundle, s v b – sepal vascular bundle. Scale bar , µ m : 100.

Download (322KB)
6. Fig. 5. Peculiarities of gynoecium structure before pollination ( 1–3 ) and after fertilization ( 4 ) in Lysimachia vulgaris (transverse sections) . 1, 3 – gynophore in its free part ( 3 ) and in the columella composition ( 4 ); 2 – vascular bundles in the gynophore; 4 – vascular bundles in the columella forming a ring, with branches extending from them, to provide communication between the bundles and, when entering the placenta, to innervate each ovule; cm – columella, gn – gynophore, ov – ovule, pl – placenta, v b – vascular bundle. Scale bars, µm: 1, 3, 4 – 100, 2 – 50.

Download (837KB)
7. Fig. 6. Gynoecium structure before pollination in Lysimachia vulgaris (transverse sections) . 1, 2 – structure of the ovary at the base at the level of the free part of the gynophore, in which 7–10 vascular bundles are differentiated; 3, 4 – middle part of the ovary, in the columella the number of bundles is reduced to 5 ( 4 ); 5 – the upper part of the ovary, the bundles in the columella disappear completely in its rounded area. cm – columella, gn – gynophore, ov – ovule, sp – septum, sp v b – septal vascular bundle, v b – vascular bundle. Scale bars , µ m : 10.

Download (265KB)
8. Fig. 7. Fruit formation in Lysimachia vulgaris ( 1–4 – external appearance; 5 – transverse section) . 1 – developing fruits at the middle stages of embryogenesis: the style is still preserved, the hollows are observed in the pericarp wall along the entire height of the ovary; 2, 3 – fruits at the latest stages of embryogenesis: in some fruits the style is preserved, in the pericarp wall, the hollows opposite and between the septal vascular bundles become more distinct, and in the upper part of the ovary, at the place the style torn-off, signs of fruit dehiscence appear; 4 – dehiscing fruits: the calyx opens and is fused with the ovary at the base, dehiscence occurs through longitudinal fissures, usually in the upper part, septal fissures almost reach the base, locular lobes are usually fewer than five (often 2–3); 5 – furrows forming in the pericarp wall in the places where the fruit dehiscence takes place: deep – septal and shallow – locular ones. l f – locular furrow, pc – pericarp, p l – pericarp lobes, s – sepal, sd – seed, s f – septal furrow, st – style. Scale bars , µ m : 1 – 500, 2–4 – 1000, 5 – 100.

Download (504KB)
9. Fig. 8. Fruit dehiscence in Lysimachia vulgaris (transverse sections). 1, 2 – locular ( 1 ) and septal ( 2 ) furrows of the fruit before dehiscence; 3, 4 – dehiscence at the base of the fruit in the area of the septal furrow: phase 1 – cells of 3 inner layers of the pericarp with thickened polysaccharide walls are destroyed ( 3 ), phase 2 – cells of the 3 outer layers of the pericarp with thin walls (in the protoplast, granules are observed, possibly crystals) are destroyed ( 4 ); 5, 6 – dehiscence at the fruit apex in the area of the locular furrow: in the pericarp, the cells of 2 inner layers are characterized by thickened polysaccharide walls, and the cells of the 3–4 outer layers are characterized by thin walls (tannins accumulate in the protoplast) ( 5 ), in the area of dehiscence the cells of the inner layers degenerate, but cells of the outer layers have not yet collapsed ( 6 ). em – embryo, l f – locular furrow, pc – pericarp, sd – seed, s f – septal furrow. Scale bars , µ m : 1, 4 – 50, 2, 5, 6 – 100, 3 – 20.

Download (452KB)
10. Fig. 9. Ovule formation in Lysimachia vulgaris (longitudinal sections) . 1–3 – ovule arising on the placenta, differentiation of archesporial cells, axial row of cells, initials of the lateral and basal regions of the nucellus; 4 – forming primordium of the ovule, differentiation of the initials of the hypostase, outer and inner integuments ; 5 – ovule at megasporogenesis stage; 6 – tetrad of megaspores; 7 – ovule before pollination. a с – archesporial cell, a c r – axial cell row, с h – chalaza, h – hypostase, h i – hypostase initials, i i – inner integument, i i i – inner integument initials, i l n – initials of lateral region of nucellus, i t – integumentary tapetum, m – micropyle, mg – megasporocyte, o i – outer integument, o i i – outer integument initials, ps – postament, r – raphe, v b – vascular bundle. Scale bars , µ m : 10 .

Download (491KB)
11. Fig. 10. Seed structure in Lysimachia vulgaris ( 1, 2 – longitudinal sections, 3–6 – transverse sections) . 1 – mature hemi-campylotropous seed, acuminate and curved at the micropylar and chalazal ends; 2 , 3 – seed at the stage of early embryogenesis, the seed coat is formed by both integuments: exotesta from elongated thick-walled cells with tannins, small endotestal cells are destroyed, exotegmen is represented by small, and mesotegmen (3–5 layers) by overgrown thin-walled cells, endotegmen is formed by integumentary tapetum; 4 – the endotesta has degenerated, and the mesotegmen is in a state of destruction; 5, 6 – ripening exotestal seed, in its center there is a straight dicotyledonous embryo, endosperm cells around the embryo are destroyed and form a lysis zone, exotesta and endotegmen are preserved in the seed coat. ch – chalaza, em – embryo, en – endosperm, i t – integumentary tapetum, m – micropyle, s c – seed coat, tg – tegmen, ts – testa. Scale bars, µm : 1–3, 5 – 100, 4, 6 – 50.

Download (529KB)
12. Fig. 11. Morphological type of the ovule in Lysimachia vulgaris (longitudinal sections) . 1–4 – views of sections of hemi-campylotropous ovules, depending on how the section is cut and what type they resemble: 1 – “anatropous” (the mo rphological axis is straight rather than curved, no place of attachment to the placenta is observed), 2 – “hemi-anatropous" (the morphological axis is straight rather than curved, the micropyle does not reach the placenta), 3 – “ortho-campylotropous” (the morphological axis is curved, but the bend of the chalazal part is located like in an orthotropous ovule, the asymmetry of the antiraphal region is not pronounced), 4 – “hemi-campylotropous” (the morphological axis is curved, the structures of the chalazal part are shifted to the hemi-position, like in the hemi-anatropous ovule, the asymmetry of the antiraphal region is pronounced, which is manifested in the greater extent of the integuments and the the micropyle shift towards the placenta). с h – chalaza, f – funiculus, i i – inner integument, m – micropyle, o i – outer integument. Scalr bars, µ m : 1, 4 – 20, 2, 3 – 50.

Download (390KB)

Copyright (c) 2024 Russian Academy of Sciences