Low temperature-induced chloroplast relocation in mesophyll cells of Pinus sylvestris (Pinaceae): SBF SEM 3D reconstruction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Evergreen species of temperate zone acclimate to seasonal climates by reorganizations of mesophyll cell structure including chloroplast movement as a photoprotective reaction. However the exact factor inducing structural changes is still unexplored. To reveal the specific pattern of chloroplast arrangement during the annual cycle and the effect of temperature on their movement, the mesophyll cell structure in Pinus sylvestris grown out- and indoors was studied. The serial block-face scanning electron microscopy (SBF SEM) was used for the 3D imaging of mesophyll cells to show the spatial position and shape modification of chloroplasts. It has been shown that during the growing season, chloroplasts have a well-developed thylakoid system, they are located along the cell wall and occupy predominantly the part of the cell wall faced the intercellular airspace. Chloroplast movement starts in October-November, and during the winter they aggregate in the cell lobes clumping together. At that time, the thylakoid system is reorganised and consists mainly of long doubled thylakoids and small grana. The 3D reconstruction shows that the chloroplasts are irregularly oriented, swollen, and develop multiple protrusions filled by stroma that can be recognized as stromules. In indoor plants, seasonal reorganization of the mesophyll ultrastructure does not occur suggesting low temperatures but not photoperiod and light quality induce seasonal chloroplast movement in P. sylvestris mesophyll. Finally, we indicate 3D reconstruction is a powerful tool in study of low temperature-induced change of chloroplast positioning.

Full Text

Restricted Access

About the authors

N. K. Koteyeva

Komarov Botanical Institute RAS

Author for correspondence.
Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2

A. N. Ivanova

Komarov Botanical Institute RAS; St. Petersburg State University

Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2; 199034, St. Petersburg, Universitetskaya Emb., 7–9

T. A. Borisenko

Komarov Botanical Institute RAS; St. Petersburg State University

Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2; 199034, St. Petersburg, Universitetskaya Emb., 7–9

M. S. Tarasova

Komarov Botanical Institute RAS; St. Petersburg State University

Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2; 199034, St. Petersburg, Universitetskaya Emb., 7–9

O. E. Mirgorodskaya

Komarov Botanical Institute RAS

Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2

E. V. Voznesenskaya

Komarov Botanical Institute RAS

Email: nkoteyeva@binran.ru
Russian Federation, 197022, St. Petersburg, Prof. Popova Str., 2

References

  1. Andersson B., Anderson J.M. 1980. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. – Biochimica et Biophysica Acta (BBA). – Bioenergetics. 593 (2): 427–440. https://doi.org/10.1016/0005-2728(80)90078-X
  2. Arora R., Taulavuori K. 2016. Increased risk of freeze damage in woody perennials VIS-À-VIS climate change: Importance of deacclimation and dormancy response. – Frontiers in Environmental Science. 4 (44). https://doi.org/10.3389/fenvs.2016.00044
  3. Bigras F., Ryyppö A., Lindström A., Stattin E. 2001. Cold acclimation and deacclimation of shoots and roots of conifer seedlings. – In: Conifer Cold Hardiness. Tree Physiology. P. 57–88. https://doi.org/10.1007/978-94-015-9650-3_3
  4. Brunkard J.O., Runkel A.M., Zambryski P.C. 2015. Chloroplasts extend stromules independently and in response to internal redox signals. – Proc. Natl. Acad. Sci. 112 (32): 10044–10049. https://doi.org/10.1073/pnas.1511570112
  5. Chabot J., Chabot B. 1975. Developmental and seasonal patterns of mesophyll ultrastructure in Abies balsamea. – Can. J. Bot. 53 (3): 259–304. https://doi.org/10.1139/b75-037
  6. Chang C.Y.-Y., Bräutigam K., Hüner N.P.A., Ensminger I. 2021. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. – New Phytol. 229 (2): 675–691. https://doi.org/10.1111/nph.16904
  7. Crosatti C., Rizza F., Badeck F.W., Mazzucotelli E., Cattivelli L. 2013. Harden the chloroplast to protect the plant. – Physiol. Plant. 147 (1): 55–63. https://doi.org/10.1111/j.1399-3054.2012.01689.x
  8. Demmig-Adams B., Cohu C.M., Muller O., Adams W.W. 2012. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. – Photosynth. Res. 113 (1): 75–88. https://doi.org/10.1007/s11120-012-9761-6
  9. Demmig-Adams B., Muller O., Stewart J.J., Cohu C.M., Adams W.W. 2015. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. – Journal of Photochemistry and Photobiology B: Biology. 152: 357–366. https://doi.org/10.1016/j.jphotobiol.2015.03.014
  10. Duman J.G., Wisniewski M.J. 2014. The use of antifreeze proteins for frost protection in sensitive crop plants. – Environ. Exp. Bot. 106: 60–69. https://doi.org/10.1016/j.envexpbot.2014.01.001
  11. Earles J.M., Buckley T.N., Brodersen C.R., Busch F.A., Cano F.J., Choat B., Evans J.R., Farquhar G.D., Harwood R., Huynh M., John G.P., Miller M.L., Rockwell F.E., Sack L., Scoffoni C., Struik P.C., Wu A., Yin X., Barbour M.M. 2019. Embracing 3D complexity in leaf carbon–water exchange. – Trends Plant Sci. 24 (1): 15–24. https://doi.org/10.1016/j.tplants.2018.09.005
  12. Ebel B., Hamelmann U., Nieß C. 1990. A rapid preparation method for ultrastructural investigations of conifer needles. – J. Microsc. 160 (1): 67–74. https://doi.org/10.1111/j.1365-2818.1990.tb03048.x
  13. Ensminger I., Busch F., Huner N.P.A. 2006. Photostasis and cold acclimation: sensing low temperature through photosynthesis. – Physiol. Plant. 126 (1): 28–44. https://doi.org/10.1111/j.1399-3054.2006.00627.x
  14. Ensminger I., Berninger F., Streb P. 2012. Response of photosynthesis to low temperature. – In: Terrestrial Photosynthesis in a Changing Environment: A Molecular, Physiological, and Ecological Approach. Cambridge. P. 272–289. https://doi.org/10.1017/CBO9781139051477.022
  15. Evans J.R. 2021. Mesophyll conductance: walls, membranes and spatial complexity. – New Phytol. 229 (4): 1864–1876. https://doi.org/10.1111/nph.16968
  16. Fréchette E., Chang C.Y., Ensminger I. 2016. Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus. – Tree Physiol. 36 (3): 311–324. ttps://doi.org/10.1093/treephys/tpv143
  17. Gusta L.V., Wisniewski M. 2013. Understanding plant cold hardiness: an opinion. – Physiologia Plantarum. 147 (1): 4–14. https://doi.org/10.1111/j.1399-3054.2012.01611.x
  18. Guy C.L. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 187–223. https://doi.org/10.1146/annurev.pp.41.060190.001155
  19. Hanson M.R., Conklin P.L. 2020. Stromules, functional extensions of plastids within the plant cell. – Curr. Opin. Plant Biol. 58: 25–32. https://doi.org/10.1016/j.pbi.2020.10.005
  20. Holzinger A., Buchner O., Lütz C., Hanson M.R. 2007. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. – Protoplasma. 230 (1): 23–30. https://doi.org/10.1007/s00709-006-0222-y
  21. Howe G.T., Davis J., Jeknic Z., Chen T.H.H., Frewen B., Bradshaw H.D.J., Saruul P. 1997. Physiological and genetic approaches to studying endodormancy-related traits in Populus. – Hortscience. 34 (7): 1174–1184. https://doi.org/10.21273/HORTSCI.34.7.1174b
  22. Jian L.C., Li J.H., Li P.H. 2000. Seasonal alteration in amount of Ca2+ in apical bud cells of mulberry (Morus bombciz Koidz): an electron microscopy cytochemical study. – Tree Physiol. 20: 623–628. https://doi.org/10.1093/treephys/20.9.623
  23. Jian L.C., Li P.H., Sun L.H., Chen T.H.H. 1997. Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. – J. Exp. Bot. 48 (311): 1195–1207. https://doi.org/10.1093/jxb/48.6.1195
  24. Jokela A., Sarjala T., Huttunen S. 1998. The structure and hardening status of Scots pine needles at different potassium availability levels. – Trees – Structure and Function. 12: 490–498. https://doi.org/10.1007/s004680050179
  25. Kagawa T., Wada M. 1999. Chloroplast-avoidance response induced by high-fluence blue light in prothallial cells of the fern Adiantum capillus-veneris as analyzed by microbeam irradiation. – Plant Physiol. 119 (3): 917–924. https://doi.org/10.1104/pp.119.3.917
  26. Kirchhoff H. 2019. Chloroplast ultrastructure in plants. – New Phytol. 223 (2): 565–574. https://doi.org/10.1111/nph.15730
  27. Kitashova A., Schneider K., Fürtauer L., Schröder L., Scheibenbogen T., Fürtauer S., Nägele T. 2021. Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation. – Photosynth. Res. 147 (1): 49–60. https://doi.org/10.1007/s11120-020-00795-y
  28. Köhler R.H., Hanson M.R. 2000. Plastid tubules of higher plants are tissue-specific and developmentally regulated. – J. Cell Sci. 113 (Pt1): 81–89. https://doi.org/10.1242/jcs.113.1.81
  29. Koteyeva N.K. 2002. Patterns of seasonal rhythmics in ultrastructure of shoot apical meristem and mesophyll cells in Pinus sylvestris (Pinaceae). – Bot. Zhurn. 87 (11): 50–60.
  30. Kwok E.Y., Hanson M.R. 2003. Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. – Plant J. 35 (1): 16–26. https://doi.org/10.1046/j.1365-313X.2003.01777.x
  31. Lee Y., Karunakaran C., Lahlali R., Liu X., Tanino K.K., Olsen J.E. 2017. Photoperiodic regulation of growth-dormancy cycling through induction of multiple bud–shoot barriers preventing water transport into the winter buds of Norway spruce. – Frontiers in Plant Science. 8. https://doi.org/10.3389/fpls.2017.02109
  32. Li C., Junttila O., Palva E.T. 2004. Environmental regulation and physiological basis of freezing tolerance in woody plants. – Acta Physiol. Plant. 26 (2): 213–222. https://doi.org/10.1007/s11738-004-0010-2
  33. Lloyd A.D., Mellerowicz E.J., Riding R.T., Little C.H.A. 1996. Changes in nuclear genome size and relative ribosomal RNA gene content in cambial region cells of Abies balsamea shoots during the development of dormancy. – Can. J. Bot. 74 (2): 290–298. https://doi.org/10.1139/b96-035
  34. Martin B., Oquist G. 1979. Seasonal and experimentally induced changes in the ultrastructure of chloroplasts of Pinus silvestris. – Physiol. Plant. 46 (1): 42–49. https://doi.org/10.1111/j.1399-3054.1979.tb03183.x
  35. Maurya J.P., Bhalerao R.P. 2017. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. – Ann. Bot. 120 (3): 351–360. https://doi.org/10.1093/aob/mcx061
  36. Miroslavov E., Koteyeva N. 2002. Characteristic of seasonal dynamics of mesophyll cell ultrastructure in Taxus cuspidata (Taxaceae) grown out- and indoors. – Bot. Zhurn. 87: 40–49.
  37. Muravnik L.E. 2021. The structural peculiarities of the leaf glandular trichomes: a review. – In: Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications. Cham. P. 63–97. https://doi.org/10.1007/978-3-030-30185-9_3
  38. Öquist G., Huner N.P.A. 2003. Photosynthesis of overwintering evergreen plants. – Annu. Rev. Plant Biol. 54 (1): 329–355. https://doi.org/10.1146/annurev.arplant.54.072402.115741
  39. Ottander C., Campbell D., Öquist G. 1995. Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. – Planta. 197 (1): 176–183. https://doi.org/10.1007/BF0023995
  40. Ovsyannikov A.Y., Koteyeva N.K. 2020. Seasonal movement of chloroplasts in mesophyll cells of two Picea species. – Protoplasma. 257 (1): 183–195. https://doi.org/10.1007/s00709-019-01427-6
  41. Pomeroy M.K., Siminovitch D. 1971. Seasonal cytological changes in secondary phloem parenchyma cells in Robinia pseudoacacia in relation to cold hardiness. – Can. J. Bot. 49 (5): 787–795. https://doi.org/10.1139/b71-118
  42. Sagisaka S., Kuroda H. 1991. Changes in the ultrastructure of plastids after breaking of dormancy in perennials. – Agric. Biol. Chem. 55 (6): 1671–1673. https://doi.org/10.1080/00021369.1991.10870811
  43. Sauter J.J., Wisniewski M.E., Witt W. 1996. Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus x canadensis Moench [Robusta]) wood. – J. Plant Physiol. 149: 451–461. https://doi.org/10.1016/S0176-1617(00)80239-4
  44. Savitch L.V., Leonardos E.D., Krol M., Jansson S., Grodzinski B., Huner N.P.A., Öquist G. 2002. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. – Plant Cell Environ. 25 (6): 761–771. https://doi.org/10.1046/j.1365-3040.2002.00861.x
  45. Senser M., Schötz F., Beck E. 1975. Seasonal changes in structure and function of spruce chloroplasts. – Planta. 126 (1): 1–10. https://doi.org/10.1007/BF00389354
  46. Soikkeli S. 1978. Seasonal changes in mesophyll ultrastructure of needles of Norway spruce (Picea abies). – Can. J. Bot. 56 (16): 1932–1940. https://doi.org/10.1139/b78-231
  47. Soikkeli S. 1980. Ultrastructure of the mesophyll in Scots pine and Norway spruce seasonal variation and molarity of the fixative buffer. – Protoplasma. 103 (3): 241–252. https://doi.org/10.1007/BF01276270
  48. Steponkus P.L. 1984. Role of plasma membrane in freezing injury and cold acclimation. – Annu. Rev. Plant Physiol. 35: 543–584. https://doi.org/10.1146/annurev.pp.35.060184.002551
  49. Tanaka A. 2007. Photosynthetic activity in winter needles of the evergreen tree Taxus cuspidata at low temperatures. – Tree Physiol. 27 (5): 641–648. https://doi.org/10.1093/treephys/27.5.641
  50. Thomashow M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. – Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599. https://doi.org/10.1146/annurev.arplant.50.1.571
  51. Uemura M., Tominaga Y., Nakagawara C., Shigematsu S., Minami A., Kawamura Y. 2006. Responses of the plasma membrane to low temperatures. – Physiol. Plant. 126 (1): 81–89. https://doi.org/10.1111/j.1399-3054.2005.00594.x
  52. Vogg G., Heim R., Gotschy B., Beck E., Hansen J. 1998. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.). II. Seasonal changes in the fluidity of thylakoid membranes. – Planta. 204: 201–206. https://doi.org/10.1007/s004250050246
  53. Wada M., Kagawa T., Sato Y. 2003. Chloroplast movement. – Annu. Rev. Plant Biol. 54: 455–468. https://doi.org/10.1146/annurev.arplant.54.031902.135023
  54. Welling A., Palva E.T. 2006. Molecular control of cold acclimation in trees. – Physiol. Plant. 127 (2): 167–181. https://doi.org/10.1111/j.1399-3054.2006.00672.x
  55. Wiebe H.H., Al-Saadi H.A. 1976. The role of invaginations in armed mesophyll cells of pine needles. – New Phytol. 77 (3): 773–775. https://doi.org/10.1111/j.1469-8137.1976.tb04673.x
  56. Wisniewski M., Ashworth E.N. 1986. A comparison of seasonal ultrastructural changes in stem tissues of peach (Prunus persica) that exhibit contrasting mechanisms of cold hardiness. – Botanical Gazette. 147 (4): 407–417. https://doi.org/10.1086/337608
  57. Wisniewski M., Nassuth A., Arora R. 2018. Cold hardiness in trees: A mini-review. – Frontiers in Plant Science. 9 (1394). https://doi.org/10.3389/fpls.2018.01394
  58. Xin Z., Browse J. 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. – Plant Cell Environ. 23 (9): 893–902. https://doi.org/10.1046/j.1365-3040.2000.00611.x
  59. Yamakawa S., Kato Y., Taniguchi M., Oi T. 2023. Intracellular positioning of mesophyll chloroplasts following to aggregative movement in Setaria viridis analysed three-dimensionally with a confocal laser scanning microscope. – Flora. 306: 152364. https://doi.org/10.1016/j.flora.2023.152364
  60. Yamane K., Oi T., Taniguchi M. 2020. Three-dimensional analysis of chloroplast protrusion formed under osmotic stress by polyethylene glycol in rice leaves. – Plant Prod. Sci. 23 (2): 160–171. https://doi.org/10.1080/1343943X.2019.1709513

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General anatomy of Pinus sylvestris needles on cross (A) and longitudinal (B) sections, August. En – endodermis; Ep – epidermis; H – hypodermis; IAS – intercellular airspace; M – mesophyll; St – stomata; VB – vascular bundle. Scales: A, B, 150 µm.

Download (1MB)
3. Fig. 2. Serial cross sections through mesophyll of Pinus sylvestris showing mesophyll cell extended from hypodermis to endodermis (labelled by red asterisk). The total number of sections is 351. The serial number of individual section is in the right corner of the image. En – endodermis; H – hypodermis; IAS – intercellular airspace; M – mesophyll cell; St – stomata. Scale: 50 µm.

Download (3MB)
4. Fig. 3. Transmission electron microscopy of mesophyll cells in outdoor- (A–C, F) and indoor-grown (D, E) Pinus sylvestris. A, B, D. Cross sections in the midplane of a mesophyll cell in July (A) and February (B, D). C, E, F. Cross sections of chloroplasts in July (C) and February (E, F). Ch – chloroplasts; CW – cell wall; DT – doubled thylakoids; G – grana; N – nucleus; T – tannins; V – vacuole. Scales: A, B, D, 10 µm; C, E, 1 µm; F, 0.5 µm.

Download (2MB)
5. Fig. 4. 3D reconstruction of mesophyll cells of Pinus sylvestris during vegetation (May–October) period. A. Cross section in the midplane of the cell. B–D. 3D reconstruction of chloroplasts located along the cell wall showing “summer” positioning (cell wall is not presented on the reconstruction), view from the lateral side of the cell (B) and view from the hypodermis (C) showing absence of chloroplasts along the adjacent cell walls (arrows) (D). Ch – chloroplasts; CW – cell wall; N – nucleus; V – vacuole. Scales: A–D, 10 µm.

Download (3MB)
6. Fig. 5. 3D reconstruction of chloroplasts in mesophyll cells of Pinus sylvestris during winter (November–April). A. Cross section in the midplane of the cell. B, C. 3D reconstruction of chloroplasts grouped in one of the mesophyll cell lobe (cell wall is not presented on the reconstruction), view from the lateral side of the cell (B) and view from the hypodermis (С). D. 3D reconstruction of a single chloroplast viewed from different sides showing irregular shape and several protrusions. Ch – chloroplasts; CW – cell wall; N – nucleus; V – vacuole. Scales: A–C, 10 µm; D, 5 µm.

Download (2MB)

Copyright (c) 2024 Russian Academy of Sciences