Application of Granulocyte Colony-Stimulating Factor in the Form of Pegfilgrastim in Fractionated Irradiation of Mice

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The radioprotective efficacy of granulocyte colony-stimulating factor in the form of pegfilgrastim at fractionated irradiation was evaluated on male ICR (CD-1) mice. Mice were exposed to five daily exposures to X-rays at a dose of 2.5 Gy. Three hours after each exposure, pegfilgrastim was injected subcutaneously into mice at a dosage of 0.5 μg/g. The drug was also administered daily 3–7 days after the last irradiation. The efficacy of this therapeutic regimen was evaluated on the basis of the degree of DNA damage in spleen cells 30 min after the last irradiation, hematologic parameters – after 30 min and 3 days, Schiffbases, trieno and oxodiene conjugates in the liver – after 30 min, thymus and spleen weight, the number of karyocytes in the femur, the content of thiobarbiturate-reactive products in the liver – after 3 days, as well as on the basis of 30-day survival. The application of the therapeutic regimen under study contributed to a significant correction of irradiation-induced oxidative stress: according to the criteria of the content of Schiff bases, trieno and oxodieno conjugates, the group receiving pegfilgrastim corresponded to the intact mice, the content of thiobarbiturate-reactive products in the liver decreased relative to the irradiated control, but the parameters of intact mice were not reached. Pegfilgrastim administration did not compensate for the irradiation-induced bone marrow cell death 3 days after the last irradiation and could eventually ensure the survival of only 3 mice out of 14 individuals receiving the drug. Thus, for effective application of pegfilgrastim during fractionated irradiation at a total dose of 12.5 Gy it is necessary to increase the number of irradiation sessions with decreasing dose of each session, or to decrease the total radiation dose. Joint use of pegfilgrastim with other radioprotective drugs with other mechanisms of action is also promising.

作者简介

L. Romodin

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Email: rla2904@mail.ru
Moscow, Russia

A. Moskovskij

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; National Research Nuclear University MEPhI

Moscow, Russia

G. Abelev

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

O. Nikitenko

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

T. Bychkova

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia

C. Sodboev

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

O. Aldoshina

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

参考

  1. Рождественский Л. М. Проблемы разработки отечественных противолучевых средств в кризисный период: поиск актуальных направлений развития. Радиац. биология. Радиоэкология, 60 (3), 279–290 (2020). doi: 10.31857/S086980312003011X
  2. Игнатов М. А., Блохина Т. М., Сычёва Л. П., Воробьёва Н. Ю., Осипов А. Н. и Рождественский Л. М. Оценка эффективности противолучевых препаратов по фосфорилированию гистона H2AX и микрояденому тесту. Радиац. биология. Радиоэкология, 59 (6), 585–591 (2019). doi: 10.1134/S0869803119060043
  3. Kunze S., Cecil A., Prehn C., Moller G., Ohlmann A., Wildner G., Thurau S., Unger K., RosslerU., Holter S. M., Tapio S., Wagner F., Beyerlein A., Theis F., Zitzelsberger H., Kulka U., Adamski J., Graw J., and Dalke C. Posterior subcapsular cataracts are a late effect after acute exposure to 0.5 Gy ionizing radiation in mice. International J. Radiat. Biol., 97 (4), 529–540 (2021). doi: 10.1080/09553002.2021.1876951
  4. Jameus A., Dougherty J., Narendrula R., Levert D., Valiquette M., Pirkkanen J., Lalonde C., Bonin P., Gagnon J. D., Appanna V. D., Tharmalingam S., and Thome C. Acute impacts of ionizing radiation exposure on the gastrointestinal tract and gut microbiome in mice. Int. J. Mol. Sci., 25 (6), 3339 (2024). doi: 10.3390/ijms25063339
  5. Holmes-Hampton G. P., Soni D. K., Kumar V. P., Biswas S., Wuddie K., Biswas R., and Ghosh S. P. Time-and sex-dependent delayed effects of acute radiation exposure manifest via miRNA dysregulation. iScience, 27(2), 108867 (2024). doi: 10.1016/j.isci.2024.108867
  6. Yin G., Wang Q., Lv T., Liu Y., Peng X., Zeng X., and Huang J. The radioprotective effect of LBP on neurogenesis and cognition after acute radiation exposure. Curr. ra-diopharmaceut., 17 (3), 257–265 (2024). doi: 10.2174/0118744710274008231220055033
  7. Лысенко Н. П., Пак В. В., Рогожина Л. В. и Кусу-рова З. Г. Радиобиология: учебник. Под ред. Н. П. Лысенко и В. В. Пака. 6-е изд., стер. (Лань, С.-П., 2023).
  8. Васин М. В. Противолучевые лекарственные средства (Книга-Мемуар, М., 2020).
  9. Gilevich I. V., Fedorenko T. V., Pashkova I. A., PorkhanovV. A., and Chekhonin V. P. Effects of growth factors on mobilization of mesenchymal stem cells. Bull. Exp. Biol. Med., 162 (5), 684–686 (2017).doi: 10.1007/s10517-017-3687-0
  10. You J., Yuan Y., Gu X., Wang W., and Li X. Pegylated recombinant human granulocyte colony-stimulating factor for primary prophylaxis of neutropenia in patients with cervical cancer receiving concurrent chemoradiotherapy: a prospective study. BMC Cancer, 24 (1), 833 (2024). doi: 10.1186/s12885-024-12556-4
  11. Madan R., Kumar N., Gupta A., Gupta K., Salunke P., Khosla D., Yadav B. S., and Kapoor R. Effect of prophylactic granulocyte-colony stimulating factor (G-CSF) on acute hematological toxicity in medulloblastoma patients during craniospinal irradiation (CSI). Clin. Neurol. Neu-rosurg., 196, 105975 (2020).doi: 10.1016/j.clineuro.2020.105975
  12. Rofail P., Tadros M., Ywakim R., Tadrous M., Krug A., and Cosler L. E. Pegfilgrastim: a review of the pharmacoeconomics for chemotherapy-induced neutropenia. Expert Rev. Pharmacoeconom. Outcomes Res., 12 (6), 699– 709 (2012). doi: 10.1586/erp.12.64
  13. Yamaguchi M., Suzuki M., Funaba M., Chiba A., and Kashiwakura I. Mitigative efficacy of the clinical dosage administration of granulocyte colony-stimulating factor and romiplostim in mice with severe acute radiation syndrome. Stem Cell Res. Therapy, 11 (1), 339 (2020).doi: 10.1186/s13287-020-01861-x
  14. Сирота Н. П. и Кузнецова Е. А. Применение метода «Комета тест» в радиобиологических исследованиях. Радиац. биология. Радиоэкология, 50 (3), 329–339 (2010).
  15. Журавлёв А. И., Мяльдзин А. Р. и Баранов А. В. Методы регистрации свободнорадикального окисления липидов в сыворотке, плазме и мембранах клеток крови: Методические указания (Изд-во Московской ветеринарной академии, М., 1989), сс. 4–6.
  16. Волчегорский И. А., Налимов А. Г., Яровинский Б. Г. и Лившиц Р. И. Сопоставление различных подходов к определению продуктов перекисного окисления липидов в гептан-изопропанольных экстрактах крови. Вопр. мед. химии, 35 (1), 127–131 (1989).
  17. Mantz J. M. Method for the quantitative examination of bone marrow of white rats. C. R. Seances Soc. Biol. Fil., 151 (11), 1957–1960 (1957).
  18. Гаврилов В. Б., Гаврилова А. Р. и Магуль Л. М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопр. мед. химии, 33 (1), 118–122 (1987).
  19. Zaitsev S., Mishurov A., and Bogolyubova N. Comparative Study of the Antioxidant Protection Level in the Du-roc Boar Blood Based on the Measurements of Active Products of the Thiobarbituric Acid. In: Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East (AFE-2021) (Cham, 2021), pp. 500–506. doi: 10.1007/978-3-030-91405-9_55
  20. Kaplan E. L. and Meier P. Nonparametric Estimation from incomplete observations. J. Am. Stat. Assoc., 53 (282), 457–481 (1958).doi: 10.1080/01621459.1958.10501452
  21. Камышников В. С. Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. 3-e издание (МЕДпрессинформ, М., 2009).
  22. Agarwala S. S., Nagl U., Guo X., Bellon A., Heyn J., Dimova-Dobreva M., Shen Y. M., Schaffar G., HumphreyM., Mathieson N., Koptelova N., and Gattu S. A review of the totality of evidence supporting the development and approval of a pegfilgrastim biosimilar (LA-EP2006). Curr. Med. Res. Opin., 38 (6), 999–1009 (2022). doi: 10.1080/03007995.2022.2061707
  23. Theyab A., Algahtani M., Alsharif K. F., Hawsawi Y. M., Alghamdi A., and Akinwale J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. Hematology, 26 (1), 628–636 (2021).doi: 10.1080/16078454.2021.1965725
  24. Elsadek N. E., Emam S. E., Abu Lila A. S., Shimizu T., Ando H., Ishima Y., and Ishida T. Pegfilgrastim (PEG-G-CSF) induces anti-polyethylene glycol (PEG) IgM via a T cell-dependent mechanism. Biol. Pharmaceut. Bull., 43 (9), 1393–1397 (2020). doi: 10.1248/bpb.b20-00345
  25. Рождественский Л. М. Классификация противолучевых средств в аспекте их фармакологического сигнала и сопряженности со стадией развития лучевого поражения. Радиац. биология. Радиоэкология, 2, 117– 135 (2017). doi: 10.7868/S0869803117020126
  26. Wei J., Wang B., Wang H., Meng L., Zhao Q., Li X., XinY., and Jiang X. Radiation-induced normal tissue damage: oxidative stress and epigenetic mechanisms. Ox-id. Med. Cell. Longevity, 2019, 3010342 (2019).doi: 10.1155/2019/3010342
  27. Niu X., Shen Y., Wen Y., Mi X., Xie J., Zhang Y., and Ding Z. KTN1 mediated unfolded protein response protects keratinocytes from ionizing radiation-induced DNA damage. J. Dermatol. Sci., 114 (1), 24–33 (2024).doi: 10.1016/j.jdermsci.2024.02.006
  28. Sotomayor C. G., Gonzalez C., Soto M., Moreno-Bertero N., Opazo C., Ramos B., Espinoza G., Sanhueza A., Cardenas G., Yevenes S., Diaz-Jara J., de Grazia J., Manterola M., Castro D., Gajardo A., and Rodrigo R. Ionizing radiation-induced oxidative stress in computed tomography-effect of vitamin C on prevention of DNA damage: PREVIR-C randomized controlled trial study protocol. J. Clin. Med., 13 (13), 3866 (2024).doi: 10.3390/jcm13133866
  29. Gupta P., Sharma Y., Viswanathan P., and Gupta S. Cellular cytokine receptor signaling and ATM pathway intersections affect hepatic DNA repair. Cytokine, 127, 154946 (2020). doi: 10.1016/j.cyto.2019.154946
  30. So E. Y. and Ouchi T. Decreased DNA repair activity in bone marrow due to low expression of DNA damage repair proteins. Cancer Biol. Therapy, 15 (7), 906–910 (2014). doi: 10.4161/cbt.28883
  31. Rae C. and MacEwan D. J. Granulocyte macrophagecolony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching. Cell Death Differ., 11 (2), S162-171 (2004).doi: 10.1038/sj.cdd.4401494
  32. Schoergenhofer C., Schwameis M., Wohlfarth P., Brostjan C., Abrams S. T., Toh C. H., and Jilma B. Granulocyte colony-stimulating factor (G-CSF) increases histone-complexed DNA plasma levels in healthy volunteers. Clinical Exp. Med., 17 (2), 243–249 (2017).doi: 10.1007/s10238-016-0413-6
  33. Beyer C., Stearns N. A., Giessl A., Distler J. H., Schett G., and Pisetsky D. S. The extracellular release of DNA and HMGB1 from Jurkat T cells during in vitro necrotic cell death. Innate immunity, 18 (5), 727–737 (2012).doi: 10.1177/1753425912437981
  34. Huang C. T., Wen Y. T., Desai T. D., and Tsai R. K. In-travitreal injection of long-acting pegylated granulocyte colony-stimulating factor provides neuroprotective effects via antioxidant response in a rat model of traumatic optic neuropathy. Antioxidants, 10 (12), 1934 (2021).doi: 10.3390/antiox10121934
  35. Кузин А. М. Структурно-метаболическая теория в радиобиологии (Наука, М., 1986).
  36. Komuro I., Keicho N., Iwamoto A., and Akagawa K. S. Human alveolar macrophages and granulocyte-macrophage colony-stimulating factor-induced monocyte-derived macrophages are resistant to H2O2 via their high basal and inducible levels of catalase activity. J. Biol. Chem., 276 (26), 24360–24364 (2001).doi: 10.1074/jbc.M102081200
  37. Csar X. F., Wilson N. J., Strike P., Sparrow L., McMahon K. A., Ward A. C., and Hamilton J. A. Cop-per/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells. Proteomics, 1 (3), 435–443 (2001). doi: 10.1002/1615-9861(200103)1:3<435::AID-PROT 435>3.0.CO;2-Q
  38. Бельская Л. В., Косенок В. К., Массард Ж. и Завьялов А. А. Состояние показателей липопероксидации и эндогенной интоксикации у больных раком легкого. Вестн. РАМН, 71 (4), 313–322 (2016).doi: 10.15690/vramn712
  39. Rees J. N., Florang V. R., Anderson D. G., and Doorn J. A. Lipid peroxidation products inhibit dopamine catabolism yielding aberrant levels of a reactive intermediate. Chem. Res. Toxicol., 20 (10), 1536–1542 (2007). doi: 10.1021/tx700248y
  40. Манько В. М. и Девришов Д. А. Ветеринарная иммунология. Фундаментальные основы: Учебник (Агровет, М., 2011).
  41. Zuo Z., Wang L., Wang S., Liu X., Wu D., Ouyang Z., Meng R., Shan Y., Zhang S., Peng T., Li Z., and Cong Y. Radioprotective effectiveness of a novel delta-tocotrienol prodrug on mouse hematopoietic system against (60)Co gamma-ray irradiation through inducing granulocyte-colony stimulating factor production. Eur. J. Med. Chem., 269, 116346 (2024). doi: 10.1016/j.ejmech.2024.116346
  42. Daniel J. A., Roth K. R., Patel P. V., and Schultz K. L. Atraumatic splenic rupture secondary to granulocyte-colony stimulating factor medication exposure. Am. J. Emerg.Med., 80, 221-228. (2024).doi: 10.1016/j.ajem.2024.04.036
  43. Wu Z., Sun W., He B., and Wang C. Clinical features, treatment, and outcome of granulocyte colony stimulating factor-induced sweet syndrome. Archives Dermatol. Res., 316 (10), 685 (2024). doi: 10.1007/s00403-024-03414-1
  44. Sugai Y., Toyoguchi Y., Kanoto M., Kirii K., Hiraka T., Konno Y., Watarai F., Kamio Y., Seino M., Ohta T., and Nagase S. Clinical and image features: large-vessel vasculitis after granulocyte colony stimulating factor administration. Acta Radiol., 65 (4), 383–391 (2024).doi: 10.1177/0284185120931685
  45. Seto Y., Kittaka N., Taniguchi A., Kanaoka H., Nakajima S., Oyama Y., Kusama H., Watanabe N., Matsui S., Nishio M., Fujisawa F., Takano K., Arita H., and Nakayama T. Pegfilgrastim-induced vasculitis of the subclavian and basilar artery complicated by subarachnoid hemorrhage in a breast cancer patient: a case report and review of the literature. Surg. Case Rep., 8 (1), 155 (2022). doi: 10.1186/s40792-022-01499-2
  46. Cheng Y., Zhao Y., Xu M., Du H., Sun J., Yao Q., Qu J., Liu S., Guo X., and Xiong W. Role of recombinant human granulocyte colony-stimulating factor in development of cancer-associated venous thromboembolism in lung cancer patients who undergo chemotherapy. Front. Immunol., 15, 1386071 (2024). doi: 10.3389/fimmu.2024.1386071
  47. Aksay M. F., Bal E., Kilinc B. E., and Akpolat A. O. Evaluation of the effect of granulocyte colony stimulating factor on spinal fusion in a rat model of spinal surgery. Turkish Neurosurg., 34 (5), 779–788 (2024).doi: 10.5137/1019-5149.JTN.44636-23.2
  48. Rajpurohit S., Musunuri B., Basthi Mohan P., Bhat G., and Shetty S. Role of granulocyte colony stimulating factor in the treatment of cirrhosis of liver: a systematic review. J. Int. Med. Res., 51 (11), 3000605231207064 (2023). doi: 10.1177/03000605231207064
  49. Konstantis G., Tsaousi G., Pourzitaki C., Kitsikidou E., Magouliotis D. E., Wiener S., Zeller A. C., Willuweit K., Schmidt H. H., and Rashidi-Alavijeh J. Efficacy of granulocyte colony-stimulating factor in acute on chronic liver failure: A systematic review and survival meta-analysis. J. Clin. Med., 12 (20), 6541 (2023). doi: 10.3390/jcm12206541
  50. Martin-Mateos R., Gonzalez-Alonso R., Alvarez-Diaz N., Muriel A., Gaetano-Gil A., Donate Ortega J., Lopez-Jerez A., Figueroa Tubio A., and Albillos A. Granulocyte-colony stimulating factor in acute-on-chronic liver failure: Systematic review and meta-analysis of randomized controlled trials. Gastroenterol. Hepatol., 46 (5), 350–359 (2023). doi: 10.1016/j.gastrohep.2022.09.007
  51. Yuan J., Xue L. X., and Ren J. P. Granulocyte-colony stimulating factor, a potential candidate for the treatment of Parkinson's disease. J. Neurosurg. Sci., 68 (5), 558-566 (2024). doi: 10.23736/S0390-5616.21.05314-5

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025