The Presence of Septin Proteins in the Neuromuscular Junction of Somatic Muscle in the Earthworm Lumbricus terrestris

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using fluorescent confocal microscopy it has been shown that proteins belonging to the septin family such as Septin 2, 3, 5, 7, and 9 are present in the somatic muscle of the earthworm Lumbricus terrestris. Septins 2 and 9 are associated with the lack of their specific concentrations in a cholinergic synapse, while septins 3, 5, and especially 7 levels correlate with quantitatively expressed binding in their localization to the motor end plate. It is assumed that Septins 3, 5 and, mostly, 7 can be involved in the mechanisms of modulation of quantal release of neurotransmitters.

作者简介

L. Nurullin

Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences; Kazan State Medical University

Email: leniz2001@mail.ru
Kazan, 420111 Russia; Kazan, 420012 Russia

E. Volkov

Kazan State Medical University

Email: euroworm@mail.ru
Kazan, 420012 Russia

参考

  1. Grupp B. and Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol. Chem., 404 (1), 1–13 (2022). doi: 10.1515/hsz-2022-0263
  2. Cavini I. A., Leonardo D. A., Rosa H. V. D., Castro D. K. S. V., D'Muniz Pereira H., Valadares N. F., Araujo A. P. U., and Garratt R. C. The structural biology of septins and their filaments: an update. Front. Cell Dev. Biol., 9, 765085 (2021). doi: 10.3389/fcell.2021.765085
  3. Kartmann B. and Roth D. Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J. Cell. Sci., 114 (Pt 5), 839–844 (2001). doi: 10.1242/jcs.114.5.839
  4. Deb B. K. and Hasan G. Regulation of store-operated Ca2+ entry by septins. Front. Cell Dev. Biol., 4, 142 (2016). doi: 10.3389/fcell.2016.00142
  5. Deb B. K. and Hasan G. SEPT7-mediated regulation of Ca2+ entry through Orai channels requires other septin subunits. Cytoskeleton (Hoboken), 76 (1), 104– 114 (2019). doi: 10.1002/cm.21476
  6. Deb B. K., Chakraborty P., Gopurappilly R., and Hasan G. SEPT7 regulates Ca2+ entry through Orai channels in human neural progenitor cells and neurons. Cell Calcium, 90, 102252 (2020). doi: 10.1016/j.ceca.2020.102252
  7. Werner B. and Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken), 80 (7–8), 275–289 (2023). doi: 10.1002/cm.21728
  8. Nurullin L. F., Khuzakhmetova V. F., Khaziev E. F., Samigullin D. V., Tsentsevitsky A. N., Skorinkin A. I., Bukharaeva E. A., and Vagin O. Reorganization of septins modulates synaptic transmission at neuromuscular junctions. Neuroscience, 404, 91–101 (2019). doi: 10.1016/j.neuroscience.2019.01.060
  9. Volkov E. M. and Nurullin L. F. Effects of cholinergic receptor agonists and antagonists on miniature stimulatory postsynaptic ionic currents in somatic muscle cells of lumbricus terrestris. Bull. Exp. Biol. Med., 139 (3), 360–362 (2005). doi: 10.1007/s10517-005-0294-2
  10. Bennett M. R., Farnell L., and Gibson W. G. The probability of quantal secretion near a single calcium channel of an active zone. Biophys. J., 78 (5), 2201–2221 (2000). doi: 10.1016/S0006-3495(00)76769-5
  11. Parry L., Tanner A., and Vinther J. The origin of annelids. Front. Palaeontol., 57 (6), 1091–1103 (2014). doi: 10.1111/pala.12129
  12. Purschke G. and Müller M. C. Evolution of body wall musculature. Integr. Comp. Biol., 46 (4), 497–507 (2006). doi: 10.1093/icb/icj053
  13. Nurullin L. F., Almazov N. D., and Volkov E.M. Immunofluorescent identification of GABAergic structures in the somatic muscle of the earthworm Lumbricus terrestris. Biochemistry (Moscow). Suppl. Ser. A Membr. Cell. Biol., 17 (3), 208–213 (2023). doi: 10.1134/S1990747823040074, EDN: GMIYPL
  14. Volkov E. M., Nurullin L. F., Svandová I., and Vyskocil F. Participation of electrogenic Na+-K+ATPase in the membrane potential of earthworm body wall muscles. Physiol. Res., 49 (4), 481–484 (2000). EDN: LGGZWJ
  15. Grigoryev P. N., Khisamieva G. A., and Zefirov A.L. Septin polymerization slows synaptic vesicle recycling in motor nerve endings. Acta Naturae., 11 (2), 54–62 (2019). doi: 10.32607/20758251-2019-11-2-54-62, EDN: UWFOQK
  16. Beites C. L., Campbell K. A., and Trimble W. S. The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNARE complex. Biochem. J., 385 (Pt 2), 347–353 (2005). doi: 10.1042/BJ20041090
  17. Ito H., Atsuzawa K., Morishita R., Usuda N., Sudo K., Iwamoto I., Mizutani K., Katoh-Semba R., Nozawa Y., Asano T., and Nagata K. Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J. Neurochem., 108 (4), 867–880 (2009). doi: 10.1111/j.1471-4159.2008.05849.x
  18. Maimaitiyiming M., Kobayashi Y., Kumanogoh H., Nakamura S., Morita M., and Maekawa S. Identification of dynamin as a septin-binding protein. Neurosci. Lett., 534, 322–326 (2013). doi: 10.1016/j.neulet.2012.12.002

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024