Thermodynamic model of the h2o-licl-nacl system for fluid inclusions study: calculation using the pitzer equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A thermodynamic model of the ternary fluid system H2O-LiCl-NaCl is proposed for the temperature range from –77 to +300°C. This model incorporates low-temperature phase transitions of freezing products of water-salt inclusions. The model is based on the Pitzer equations using new interaction parameters of Na, Cl and the corresponding equilibrium constants of reactions involving the solid and liquid phases. Based on microthermometry data of fluid inclusions (T of phase transitions during heating after freezing), the model allows determine the salt concentrations. Characteristics (T, wt% LiCl and NaCl) of triple points with solid phases including the eutectic E''(ice + LiCl·5H2O + NaCl·2H2O), peritectic P1'' (LiCl·5H2O + + NaCl·2H2O + NaCl) and P2'' (LiCl·5H2O + LiCl·3H2O + NaCl) and cotectic, peritectic curves separating the phase fields (ice + L, NaCl·2H2O + L, NaCl + L), as well as solubility isotherms of ice, hydrohalite and halite calculated by the model showed good agreement with experimental data. As an example of the application of the model to the natural object, we determined the salt contents in lithium-bearing brine inclusions in late quartz veins of the Bolshie Keivy area (Fennoscandian Shield).

Full Text

Restricted Access

About the authors

M. A. Misyura

Institute of Precambrian Geology and Geochronology, Russian Academy of Scienses

Author for correspondence.
Email: max.misyura94@gmail.com
Russian Federation, St.Petersburg

S. A. Bushmin

Institute of Precambrian Geology and Geochronology, Russian Academy of Scienses

Email: s.a.bushmin@ipgg.ru
Russian Federation, St.Petersburg

O. V. Aleksandrovich

Institute of Precambrian Geology and Geochronology, Russian Academy of Scienses

Email: max.misyura94@gmail.com
Russian Federation, St.Petersburg

M. E. Mamykina

Institute of Precambrian Geology and Geochronology, Russian Academy of Scienses

Email: max.misyura94@gmail.com
Russian Federation, St.Petersburg

E. V. Savva

Institute of Precambrian Geology and Geochronology, Russian Academy of Scienses

Email: max.misyura94@gmail.com
Russian Federation, St.Petersburg

References

  1. Bushmin S.A., Vapnik Y.A, Ivanov M.V., et al. Properties of fluids during metasomatic alteration of metamorphic rocks under P–T conditions of the middle crust: An example from the Bolshie Keivy region, Belomorian-Lapland orogen, Fennoscandian Shield // Petrology. 2024. V. 32. № 4. P. 478–501.
  2. Dubois M., Monnin C., Castelain T., et al. Investigation of the LiCl–NaCl–H2О system: A synthetic fluid inclusion study and thermodynamic modeling from –50° to +100°C and up to 12 mol/kg // Economic Geology. 2010. V. 105. № 2. P. 329–338.
  3. Steele-MacInnis M., Ridley J., Lecumberri-Sanchez P., et al. Application of low-temperature microthermometric data for interpreting multicomponent fluid inclusion compositions // Earth-Science Reviews. 2016. V. 159. P. 14–35.
  4. Pitzer K.S. Ion interaction approach: Theory and data correlation // Activity coefficients in electrolyte solutions. Ed. K.S. Pitzer. CRC Press. 1991. Р. 75−153.
  5. Monnin C., Dubois M., Papaiconomou N., et al. Thermodynamics of the H2O+LiCl system // Journal of Chemical Engineering Data. 2002. V. 47. P. 1331−1336.
  6. Toner J.D., Catling D.C. A low-temperature thermodynamic model for the Na-K-Ca-Mg-Cl system incorporating new experimental heat capacities in KCl, MgCl2 and CaCl2 solutions // J. Chem. Eng. Data. 2017. V. 62. № 3. P. 995–1010.
  7. Møller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system, to high temperature and concentration // Geochimica et Cosmochimica Acta. 1988. V. 52. P. 821−837.
  8. Holmes H.F., Mesmer R.E. Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250°C // Journal of Physical Chemistry. 1983. V. 87. P. 1242−1255.
  9. Акопов E.K. Политерма растворимости тройной системы LiCl–NaCl–H2О // Журнал прикладной химии. 1963. Т. 36. С. 1916−1919.
  10. Harlaux M., Mercadier J., Bonzi W.M-E., et al. Geochemical signature of magmatic-hydrothermal fluids exsolved from the Beauvoir rare-metal granite (Massif Central, France): Insights from LA-ICPMS analysis of primary fluid Inclusions // Geofluids. 2017. V. 2017. Article ID 1925817. 25 pages.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phase diagram of the H2O–LiCl–NaCl system (wt. %). E′(−75.9°C) and P1′ (−65.4°C) are the calculated points of the H2O–LiCl binary system, E(−21.2°C and P(+0.2°C) are the points of the H2O–NaCl system; E′′, and are the points of the H2O–NaCl–LiCl ternary system (Table 1), here and below: ice – ice, hh – hydrohalite, h or H – halite, L – liquid phase, in the hh field the isotherms are every 5°C.

Download (184KB)
3. Fig. 2. Photographs of LiCl-bearing brine inclusions in quartz. (a) – primary brine inclusion with CO2 and zabuyelite, sample E3-1v; (b) – primary-secondary inclusion with halite and zabuyelite, nearby small primary-secondary brine inclusions without solid phases and CO2 inclusions, sample E3-1v; (c) – primary-secondary inclusions with zabuyelite, nearby small CO2 inclusions, sample B880-6; (d) – giant primary-secondary inclusion and nearby in the same linear zone small brine inclusions, sample B884-1b. BR – brine, V – gas phase, Z – zabuyelite.

Download (308KB)
4. Fig. 3. Raman spectra of zabuyelite obtained in brine inclusions in quartz in samples E3–1v (a) and B880–6 (b). Qz – quartz.

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences