Theoretical justification of design and operating-technological parameters of automated separating working units of a potato harvesting machine

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The modern market for agricultural machinery is saturated with a large number of machines, both domestic and mainly imported. Consequently, this circumstance indicates the need to develop and select scientifically based machine systems, including the technological provision of machine complexes with digital equipment that allows monitoring the quality of a certain technological operation and interpreting the received information with a technical means to change the initial state of the affected object, which is current scientific problem. Purpose of the study. Justification of the design, operational and technological parameters of automated separating working bodies of a potato harvester. Material and methods. A systematization and generalization of modern technological processes for harvesting potatoes in seed production was carried out in a digital agricultural production system with elements of robotization of the separation process. A technology has been developed for automated potato harvesting technology in seed production. Research results. A structural and technological separating system for a potato harvester with a digital cleaning control system, a block diagram of an automated separating system for a potato harvester with a digital control system have been developed, the impact of a remote finger hump with an adjustable angle of inclination of the blade with elements of artificial intelligence has been simulated, ensuring the recognition of soil lumps and their separation from commercial potato products to tuberous heap in order to substantiate the design and technological parameters that ensure high separation completeness and minimal damage to commercial products. Discussion and conclusion. The theoretical principles of automated potato harvesting technology in seed production have been established.

全文:

受限制的访问

作者简介

A. Izmailov

FGBNU “Federal Scientific Agroengineering Center VIM”; Russian Academy of Sciences

Email: sibirev2011@yandex.ru
ORCID iD: 0000-0003-1143-7286

Academician of the RAS, Professor

俄罗斯联邦, Moscow; Moscow

A. Dorokhov

FGBNU “Federal Scientific Agroengineering Center VIM”

Email: sibirev2011@yandex.ru
ORCID iD: 0000-0002-4758-3843

Academician of the RAS, Chief Researcher

俄罗斯联邦, Moscow

A. Sibirev

FGBNU “Federal Scientific Agroengineering Center VIM”

编辑信件的主要联系方式.
Email: sibirev2011@yandex.ru
ORCID iD: 0000-0002-9442-2276

Grand PhD in Engineering Sciences, Chief Researcher

俄罗斯联邦, Moscow

M. Mosyakov

FGBNU “Federal Scientific Agroengineering Center VIM”

Email: sibirev2011@yandex.ru

PhD in Engineering Sciences

俄罗斯联邦, Moscow

N. Sazonov

FGBNU “Federal Scientific Agroengineering Center VIM”

Email: sibirev2011@yandex.ru

PhD in Engineering Sciences

俄罗斯联邦, Moscow

参考

  1. Al’t V.V., Isakova S.P. Planirovanie rabot pri vozdelyvanii zernovyh kul’tur: programmnye komponenty // Sel’skohozyajstvennye mashiny i tekhnologii. 2023. № 17(4). S. 12–18. https://doi.org/10.22314/2073-7599-2023-17-4-12-18
  2. Ahalaya B.H., Cench Yu.S. Kombinirovannyj agregat dlya obrabotki pochvy impul’snym vozdejstviem udarnoj volny //Sel’skohozyajstvennye mashiny i tekhnologii. 2023. № 17(4). S. 62–67. https://doi.org/10.22314/2073-7599-2023-17-4-62-67
  3. Dorohov A.S., Aksenov A.G., Sibiryov A.V., Mosyakov M.A. Analiticheskie issledovaniya mashinno-tekhnologicheskih kompleksov dlya sorto-fitoprochistki posadok kartofelya i ovoshchnyh kul’tur v selekcii i semenovodstve // Agrarnyj nauchnyj zhurnal. 2022. № 4. S. 76–82. Rezhim dostupa: https://agrojr.ru/index.php/asj/article/view/2005
  4. Dorohov A.S., Sibiryov A.V., Mosyakov M.A. i dr. Konceptual’nye osnovy sozdaniya avtomatizirovannogo kombajna dlya uborki kartofelya s cifrovoj sistemoj identifikacii pochvennyh komkov i ih otdeleniya ot tovarnoj produkcii // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2023. № (5). S. 98–104. https://doi.org/10.31857/2500-2082/2023/5/98-104
  5. Kazakov S.S., Zhivaev O.V., Nikulin A.V. Konstrukcionnye puti snizheniya povrezhdaemosti klubnej posadochnogo kartofelya pri rabote cepochno-lozhechnogo vysazhivayushchego apparata // Traktory i sel’hozmashiny. 2019. № 3. S. 29–34. https://doi.org/10.31992/0321-4443-2019-3-29-34
  6. Lachuga Yu.F., Izmajlov A.Yu., Lobachevskij Ya.P., Shogenov Yu.H. Intensivnye mashinnye tekhnologii, robotizirovannaya tekhnika i cifrovye sistemy dlya proizvodstva osnovnyh grupp sel’skohozyajstvennoj produkcii // Tekhnika i oborudovanie dlya sela. 2018. № 7. S. 2–7. Rezhim dostupa: https://rosinformagrotech.ru/data/tos/content/tekhnika-i-oborudovanie-dlya-sela-iyul-7-253-2018-g
  7. Lobachevskij Ya.P., Bejlis V.M., Cench Yu.S. Aspekty cifrovizacii sistemy tekhnologij i mashin // Elektrotekhnologii i elektrooborudovanie v APK. 2019. № 36. S. 40–45. Rezhim dostupa: https://vestnik.viesh.ru/journal/vypusk-3-36-2019/
  8. Lobachevskij Ya.P., Dorohov A.S. Cifrovye tekhnologii i robotizirovannye tekhnicheskie sredstva dlya sel’skogo hozyajstva // Sel’skohozyajstvennye mashiny i tekhnologii. 2021. № 15(4). S. 6–10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10
  9. Lobachevskij Ya.P., Cench Yu.S. Principy formirovaniya sistem mashin i tekhnologij dlya kompleksnoj mekhanizacii i avtomatizacii tekhnologicheskih processov v rastenievodstve // Sel’skohozyajstvennye mashiny i tekhnologii. 2022. № 16(4). S. 4–12. https://doi.org/10.22314/2073-7599-2022-16-4-4-12
  10. Otchet Otdeleniya sel’skohozyajstvennyh nauk RAN o vypolnenii fundamental’nyh i poiskovyh nauchnyh issledovanij v 2017 g. / A.V. Garist, A.A. Alferov, E.A. Demakova i dr. M.: OSHN RAN. 2018. 412 s.
  11. Petuhov S.N. Sostoyanie tekhnicheskogo i tekhnologicheskogo obespecheniya selekcii i original’nogo semenovodstva kartofelya // Agrotekhnika i energoobespechenie. 2018. № 4. S. 76–84. URL: https://www.elibrary.ru/item.asp?id=36852656 (data obrashcheniya: 20.04.2022).
  12. Fedorenko V.F., Mishurov N.P., Nemenushchaya L.A. Analiz sostoyaniya i perspektivy razvitiya selekcii i semenovodstva ovoshchnyh kul’tur: nauch. analit. obzor. M.: FGBNU «Rosinformagrotekh», 2019. 96 s. https://rosinformagrotech.ru/data/elektronnye-kopii-izdanij/rastenievodstvo/send/5-rastenievodstvo/1396-analiz-sostoyaniya-i-perspektivy-razvitiya-selektsii-i-semenovodstva-ovoshchnykh-kultur-2019
  13. Abd El-Rahman M.M.A. Development and Performance Evaluation of a Simple Grading Machine Suitable for Onion Sets // Journal of Soil Sciences and Agricultural Engineering. 2014. Vol. 2. Issue 2. PP. 213–226. https://doi.org/10.21608/jssae.2011.55418
  14. Azizi P., Dehkordi N.S., Farhadi R. Design, Construction and Evaluation of Potato Digger with Rotary Blade // Cercetari Agronomice in Moldova. 2014. Vol. 47. PP. 5–13. URL: https://clck.ru/bnNAf (дата обращения: 20.04.2022).
  15. Bachche S. Deliberation on Design Strategies of Automatic Harvesting Systems: A Survey // Robotics. 2015. Vol. 4. Issue 2. PP. 194–222. https://doi.org/10.3390/robotics4020194
  16. Dongre A.U. et al. Development of Potato Harvesting Model // International Research Journal of Engineering and Technology (IRJET). 2017. Vol. 4. Issue 10. PP. 1567–1570. https://www.irjet.net/archives/V4/i10/IRJET-V4I10288.pdf (дата обращения: 20.04.2022).
  17. Dongxia S., Aimin Z., Jianxun G. Design and Experiment on 1SZL–250A Type Sub Soiling Rotary Tillage Fertilizer Combined Soil Working Machine [Электронный ресурс] // Journal of Chinese Agricultural Mechanization. 2016. Vol. 37. Issue 4. https://caod.oriprobe.com/articles/47747497/Design_and_experiment_on_1SZL%E2%80%94250A_type_sub_soilin.htm (дата обращения: 20.04.2022).
  18. Dandekar I. et al. Review Paper Based on Design and Development of an Onion Harvesting Machine // Journal of Information and Computational Science. 2019. Vol. 9. Issue 12. PP. 333–337. https://www.researchgate.net/publication/339201506 (дата обращения: 20.04.2022).
  19. Jothi Shanmugam C., Senthilkumar G. Indigenous Development of Low Cost Harvesting Machine // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12. Issue 5. PP. 4489–4490. http://www.arpnjournals.org/jeas/research_papers/rp_2017/jeas_0817_6236.pdf (дата обращения: 20.04.2022)
  20. Shangyu M. et al. Soil Water Use, Grain Yield and Water Use Efficiency of Winter Wheat in a Long-Term Study of Tillage Practices and Supplemental Irrigation on the North China Plain // Agricultural Water Management. 2015. Vol. 150. PP. 9–17. https://doi.org/10.1016/j.agwat.2014.11.011
  21. Zhang Z.J., Jia H.L., Sun J.Y. Review of Application of Biomimetics for Designing Soil-Engaging Tillage Implements in Northeast China // International Journal of Agricultural and Biological Engineering. 2016. Vol. 9. Issue 4. PP. 12–21. https://www.ijabe.org/index.php/ijabe/article/view/1437 (дата обращения: 20.04.2022).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Design and technological scheme of the E–665/4 combine. 1 – rollers; 2 – active vertical discs; 3 – ploughshare; 4, 6 – first and second bar elevators; 5 – cylinders of a lump suppressor; 7 – hopper; 8, 10 – slides; 9, 13 – elevators; 11 – topping conveyor; 12 – lifting drum; 14 – bulkhead table; 15 – sorting; 16 – elevator for loading the hopper; 17 – additional elevator; 18 – main unloading elevator.

下载 (298KB)
3. Fig. 2. Design and technological scheme of the AVR "Esprit" combine harvester. 1 – rollers; 2 – vertical discs; 3 – ploughshare; 4, 5, 6 – the first, second and third screening elevators; 7 – roller elevator; 8 – additional elevator; 9 – unloading elevator; 10 – comb topper.

下载 (149KB)
4. Fig. 3. Design and technological scheme of the AVR-Spirit-6200 combine harvester. 1 - frame; 2 – vertical discs; 3 – digging plowshare; 4 – support wheel; 5 – main elevator; 6 – shaker; 7 – cascade elevator; 8 – finger slide; 9 – bucket elevator; 10 – bulkhead table; 11 – bunker.

下载 (196KB)
5. Fig. 4. Technological scheme of the Dewulf RA-3060 combine. 1 – rollers; 2 – vertical discs; 3 – ploughshare; 4 – main elevator; 5 – toppers; 6 – cascade elevator; 7 – additional elevator; 8 – bucket elevator; 9 – finger slide; 10 – jack element; 11 – support belt; 12 – shaft; 13 – bulkhead table; 14 – hopper.

下载 (144KB)
6. Fig. 5. Technological scheme of the Grimme SE 150/60 combine harvester. 1 – rollers; 2 – vertical discs; 3 – ploughshare; 4, 5 – first and second elevators; 6 – topping conveyor; 7, 9, 10 – first, second and third separating devices; 8 – comb topper; 11 – bulkhead table; 12 – loading elevator; 13 – hopper.

下载 (168KB)
7. Fig. 6. Disturbance control scheme.

下载 (133KB)
8. Fig. 7. Functional diagram of the automatic control system for operating and technological parameters of the separation system of a potato harvesting machine.

下载 (332KB)
9. Fig. 8. Design and technological scheme of the separation system of a potato harvester with a digital cleaning control system. 1 – receiving rod elevator; 2 – digging ploughshare; 3 – weight sensor of the digging ploughshare; 4 – microcontroller; 5 – support post of the receiving rod elevator; 6 – inertia sensor; 7 – support post of the main rod elevator; 8 – remote finger slide; 9 – main rod elevator; 10, 11 – receiver infrared radiation; 12 – electric cylinder.

下载 (297KB)

版权所有 © Russian Academy of Sciences, 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可