Модуляция уровней активности антиоксидантных ферментов и уровней шаперонов у разных генотипов Cucurbitaceae при тепловом стрессе

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Устойчивость растений к абиотическим стрессам во многом определяется взаимодействием антиоксидантной и шаперонной систем клетки, которое еще изучено недостаточно. Изучали действие теплового стресса на уровни активности антиоксидантных ферментов (супероксиддисмутаза, SOD и каталаза, CAT), а также уровни белков теплового шока (HSP70 цитоплазмы и HSP70B хлоропластов) в листьях проростков тыквы трех генотипов (Cucurbita moschata, C. pepo, C. maxima), различающихся по устойчивости к стрессам окружающей среды. Показано, что при тепловом стрессе уровни активности САТ возрастали у всех изученных генотипов. После теплового стресса показано заметное падение (48.9%) уровня активности CuZn-SOD у С. moschata, по сравнению с возрастанием активности фермента на (2–14.6%) у двух других генотипов. Уровень белков HSP70 цитоплазмы снижался на 36%, а HSP70B хлоропластов на 34% в клетках растений С. moschata после действия теплового стресса. Напротив, уровень белков теплового шока HSP70 цитоплазмы повышался у генотипов С. pepo и C. maxima на 20 и 18% соответственно, а в случае с белками HSP70B хлоропластов повышение составляло 43 и 10%. Установлено, что модуляция уровней активности CuZn-SOD (основного представителя фермента в клетке) и уровней шаперонов HSP70 цитоплазмы и HSP70B хлоропластов у генотипов Cucurbitaceae скоординирована, что свидетельствует о взаимодействии этих двух защитных систем клетки при тепловом стрессе. Таким образом, уровни HSP70, HSP70B и уровни активности CuZn-SOD являются надежными ранними сигналами предупреждения о тепловом стрессе, позволяя обнаружить стресс до того, как он нанесет серьезные повреждения растению.

Полный текст

Доступ закрыт

Об авторах

Н. П. Юрина

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Автор, ответственный за переписку.
Email: nyurina@inbi.ras.ru

Институт биохимии им. А.Н. Баха

Россия, 119071, Москва

Н. Д. Муртазина

Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: nyurina@inbi.ras.ru

Институт биохимии им. А.Н. Баха

Россия, 119071, Москва

Список литературы

  1. Mishra N., Jiang C., Chen L., Paul A., Chatterjee A., Shen G. // Front. Plant Sci. 2023. V. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622
  2. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. // Plant, Cell & Enviro. 2010. V. 33. P. 453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  3. Zandalinas S.I., Balfagón D., Arbona V., Gómez-Cadenas A. // Front. Plant Sci. 2017. V. 8. 953. https://doi.org/10.3389/fpls.2017.00953
  4. Katano K., Honda K., Suzuki N. // Int. J. Mol. Sci. 2018. V. 19. 3370. https://doi.org/10.3390/ijms19113370
  5. Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. // Physiol. Plant. 2008. V. 132. P. 452–466. https://doi.org/10.1111/j.1399-3054.2007.01029.x
  6. Wang C., Wen D., Sun A., Han X., Zhang J., Wang Z., Yin Y. // J. Cereal Sci. 2014. V. 60. P. 635-659. http://dx.doi.org/10.1016/j.jcs.2014.05.004
  7. Rahman M.A., Woo J.H., Song Y., Lee S.H., Hasan M.M., Azad M.A.K., Lee K.W. // Life. 2022. V. 12. 1426. https://doi.org/10.3390/life12091426
  8. Mishra P., Bhoomika K., Dubey R.S. // Protoplasma. 2013. V. 250. P. 3–19. https://doi.org/10.1007/s00709-011-0365-3
  9. Liu Z., Qiao D., Liu Z., Wang Z., Sun L., Li X. // Peer J. 2023. V. 11. e15177. http://doi.org/10.7717/peerj.15177
  10. Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. // Plant Growth Regul. 2010. V. 60. P. 225–235. https://doi.org/10.1007/s10725-009-9436-2
  11. Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949–964. https://doi.org/10.31857/S00 М26898423060228
  12. Masand S., Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P.53–64. https://doi.org/10.1007/s11033-015-3938-y
  13. Cho E.K., Hong C.B. // Plant Сell Reports. 2006. V. 25. P. 349–358. https://doi.org/10.1007/s00299-005-0093-2
  14. Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063–5078. https://doi.org/10.3390/ijms15035063
  15. Augustine S.M., Cherian A.V., Syamaladevi D.P., Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368–2380. https://doi.org/10.1093/pcp/pcv142
  16. Pulido P., Llamas E., Rodriguez-Concepcion M. // Plant Signaling & Behavior. 2017. V. 12. e1290039. https://doi.org/10.1080/15592324.2017.1290039
  17. Devarajan A.K., Muthukrishanan G., Truu J., Truu M., Ostonen I., Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
  18. Mokhtar M., Bouamar S., Di Lorenzo A., Temporini C., Daglia M., Riazi A. // Molecules. 2021. V. 26. 3623. https://doi.org/10.3390/molecules26123623
  19. Vinayashree S., Vasu P. // Food Chem. 2021. V. 340. 128177. https://doi.org/10.1016/j.foodchem.2020.128177
  20. Круг Г. Овощеводство.Пер. с немецкого. М.: Колос, 2000. 572 с.
  21. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
  22. Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. // Gene. 2013. V. 516. P. 184–189. https://doi.org/10.1016/j.gene.2012.11.052
  23. Gill S.S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  24. Simova-Stoilova L., Vaseva I., Grigorova B., Demirevska. K., Feller U. // Plant Physiol. Biochem. 2010. V. 48. P. 200–206. https://doi.org/10.1016/j.plaphy.2009.11.003
  25. Sharma P., Dubey R.S. // J. Plant Physiol. 2005. V. 162. P. 854–864. https://doi.org/10.1016/j.jplph.2004.09.011
  26. Chen S., Liu A., Zhang S., Li C., Chang R., Liu D. // Plant Physiol. Biochem. 2013. V. 73. P. 245–253. https://doi.org/10.1016/j.plaphy.2013.10.002
  27. Driedonks N., Xu J., Peters J.L., Park S., Rieu I. // Front. Plant Sci. 2015. V. 6. 999. https://doi.org/10.1134/S0006297915100053 10.3389/fpls.2015.00999
  28. Fortunato S., Lasorella C., Dipierro N., Vita F., de Pinto M.C. // Antioxidants. 2023. V. 12. 605. https://doi.org/10.3390/antiox12030605
  29. Andrási N., Pettkó-Szandtner A., Szabados L. // J. Exp. Botany. 2021. V. 72. P. 1558–1575. https://doi.org/10.1093/jxb/eraa576
  30. Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
  31. Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M. // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
  32. Kim T., Samraj S., Jiménez J., Gómez C., Liu T., Begcy K. // BMC Plant Biology. 2021. V. 21. P. 1–20. https://doi.org/10.1186/s12870-021-02959-x
  33. Liu J., Xu L., Shang J., Hu X., Yu H., Wu H., Lv W., Zhao Y. // Genet. Mol. Biol. 2021. V. 44. e20210035. https://doi.org/10.1590/1678-4685-GMB-2021-0035
  34. Davoudi M., Chen J., Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://doi.org/10.3390/ijms23031918
  35. Aina O., Bakare O., Fadaka A.O., Keyster M., Klein A. // Planta. 2024. V. 259. 60. http://doi.org/10.1007/s00425-024-04333-1
  36. Dumanović J., Nepovimova E., Natić M., Kuča K., & Jaćević V. // Front. Рlant Sci. 2021. V. 11. 552969. https://doi.org/10.3389/fpls.2020.552969

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Активность каталазы в листьях растений трех генотипов Cucurbitaceae после теплового стресса: 1 — контроль, 2 — 38°С. * — обозначены статистически значимые различия (р < 0.05).

Скачать (95KB)
3. Рис. 2. Активность суммарная T-SOD (а), а также CuZn-SOD (б) и Fe-SOD, Mn-SOD (в) в листьях растений трех генотипов Cucurbitaceae после теплового стресса: 1 — контроль, 2 — 38°С. * — обозначены статистически значимые различия (р < 0.05).

Скачать (292KB)
4. Рис. 3. Изменение уровней белков теплового шока HSP70 цитоплазмы (а) и HSP70B хлоропластов (б) у трех генотипов Cucurbitaceae после теплового стресса (2) или без стресса, контроль (1). * — обозначены статистически значимые различия (р < 0.05).

Скачать (182KB)
5. Рис. 4. Схема взаимодействия шаперонной и антиоксидантной ферментной системы, участвующих в стрессовом ответе на тепловой стресс. HSE (Heat Shock Elements) — элементы теплового шока в промоторных областях генов, регулируемых транскрипционными факторами Hsf; САТ — каталаза; SOD — супероксиддисмутаза; POD — пероксидаза; APX — аскорбатпероксидаза; GR — глутатионредуктаза.

Скачать (283KB)

© Российская академия наук, 2025