Синтез, фотофизические и электрохимические свойства сопряженных систем донор–акцептор– донор на основе 1,3,4-тиадиазола и конденсированных производных нафто[2,1-b]тиофена

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основе конденсированных бензотиофен-2-карбоксилатов и алкилзамещенного 2,2’-битиофен-5-карбоксилата получена серия 2,5-диарилзамещенных производных 1,3,4-тиадиазола. Изучены фотофизические и электрохимические свойства полученных соединений и определено, что увеличение цепи сопряжения в донорном фрагменте замещенных 1,3,4-тиадиазолов приводит к сужению ширины запрещенной зоны главным образом за счет увеличения уровня ВЗМО.

Об авторах

Евгений Борисович Ульянкин

ФГАОУ ВО «Омский государственный университет им. Ф.М. Достоевского»; ФГАОУ ВО «Омский государственный технический университет»

Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0002-2898-5003
Россия, 644077 Омск, просп. Мира 55а; 644050 Омск, просп. Мира 11

Анастасия Сергеевна Костюченко

ФГАОУ ВО «Омский государственный университет им. Ф.М. Достоевского»; ФГАОУ ВО «Омский государственный технический университет»

Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0002-4331-2560
Россия, 644077 Омск, просп. Мира 55а; 644050 Омск, просп. Мира 11

Александр Семенович Фисюк

ФГАОУ ВО «Омский государственный университет им. Ф.М. Достоевского»; ФГАОУ ВО «Омский государственный технический университет»

Автор, ответственный за переписку.
Email: fisyuk@chemomsu.ru
ORCID iD: 0000-0001-6191-9297
Россия, 644077 Омск, просп. Мира 55а; 644050 Омск, просп. Мира 11

Список литературы

  1. Kostyuchenko A.S., Wiosna-Salyga G., Kurow-ska A., Zagorska M., Luszczynska B., Grykien R., Glowacki I., Fisyuk A.S., Domagala W., Pron A. J. Mater. Sci. 2016, 51 (5), 2274–2282. doi: 10.1007/s10853-015-9529-4
  2. Kotwica K., Bujak P., Data P., Krzywiec W., Wamil D., Gunka P.A., Skorka L., Jaroch T., Nowakowski R., Pron A., Monkman A. Chem. Eur. J. 2016, 22 (23), 7978–7986. doi: 10.1002/chem.201600513
  3. Fukuta S., Wang Z., Miyane S., Koganezawa T., Sano T., Kido J., Mori H., Ueda M., Higashihara T. Polym. J. 2015, 47 (7), 513–521. doi: 10.1038/pj.2015.19
  4. Chen H., Liu Z., Zhao Z., Zheng L., Tan S., Yin Z., Zhu C., Liu Y. ACS Appl. Mater. Interfaces 2016, 8 (48), 33051–33059. doi: 10.1021/acsami.6b12540
  5. Kang B., Lee Y.S., Hwa J., Dongbo Z., Cho K., Kim Y.-H. Polym. Chem. 2021, 12 (12), 1758–1767. doi: 10.1039/D0PY01710H
  6. Kostyuchenko A.S., Uliankin E.B., Stasyuk A.J., Samsonenko A.L., Zheleznova T.Yu., Shatsaus-kas A.L., Fisyuk A.S.J. Org. Chem. 2022, 87 (10), 6657–6667. doi: 10.1021/acs.joc.2c00310
  7. Kurowska A., Kostyuchenko A.S., Zassowski P., Skorka L., Yurpalov V.L., Fisyuk A.S., Pron A., Domagala W.J. Phys. Chem. C. 2014, 118 (43), 25176–25189. doi: 10.1021/jp507838c
  8. Kostyuchenko A.S., Zheleznova T.Yu., Stasyuk A.J., Kurowska A., Domagala W., Pron A., Fisyuk A.S. Beilstein J. Org. Chem. 2017, 13, 313–322. doi: 10.3762/bjoc.13.34
  9. Bujak P., Kulszewicz-Bajer I., Zagorska M., Maurel V., Wielgus I., Pron A. Chem. Soc. Rev. 2013, 42 (23), 8895. doi: 10.1039/c3cs60257e
  10. Zhao Y., Guo Y., Liu Y. Adv. Mater. 2013, 25 (38), 5372–5391. doi: 10.1002/adma.201302315
  11. Hacıefendioǧlu T., Yildirim E. ACS Omega. 2022, 7 (43), 38969–38978. doi: 10.1021/acsomega.2c04713
  12. Fukuta S., Seo J., Lee H., Kim H., Kim Y., Ree M., Higashihara T. Macromolecules. 2017, 50 (3), 891–899. doi: 10.1021/acs.macromol.6b02475
  13. Kleinhenz N., Yang L., Zhou H., Price S.C., You W. Macromolecules. 2011, 44 (4), 872–877. doi: 10.1021/ma1024126
  14. Löbert M., Mishra A., Uhrich C., Pfeiffer M., Bäuerle P.J. Mater. Chem. C. 2014, 2 (24), 4879–4892. doi: 10.1039/C4TC00335G
  15. Benatto L., Koehler M.J. Phys. Chem. C. 2019, 123 (11), 6395–6406. doi: 10.1021/acs.jpcc.8b12261
  16. Kim Y.J., Cheon Y.R., Jang J.-W., Kim Y.-H., Park C.E.J. Mater. Chem. C. 2015, 3 (9), 1904–1912. doi: 10.1039/C4TC02597K
  17. Marchanka A., Maier S.K., Höger S., van Gastel M.J. Phys. Chem. B. 2011, 115 (46), 13526–13533. doi: 10.1021/jp208334y
  18. Sen A., Groß A. ACS Appl. Energy Mater. 2019, 2 (9), 6341–6347. doi: 10.1021/acsaem.9b00973
  19. Wang X., Guo L., Xia P.F., Zheng F., Wong M.S., Zhu Z. J. Mater. Chem. A. 2013, 1 (42), 13328–13336. doi: 10.1039/C3TA12901B
  20. Anthony J.E. Chem. Rev. 2006, 106 (12), 5028–5048. doi: 10.1021/cr050966z
  21. Murphy A.R., Fréchet J.M. J. Chem. Rev. 2007, 107 (4), 1066–1096. doi: 10.1021/cr0501386
  22. Rademacher P., Heinemann C., Jänsch S., Kowski K., Weiß M.E. Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy. 2000, 56 (6), 1179–1190. doi: 10.1016/S1386-1425(99)00220-6
  23. Seixas de Melo J., Pina J., Rodrigues L.M., Becker R.S.J. Photochem. Photobiol. A: Chem. 2008, 194 (1), 67–75. doi: 10.1016/j.jphotochem.2007.07.014
  24. Goon I.Y., Lai L.M.H., Lim M., Munroe P., Gooding J.J., Amal R. Chem. Mater. 2009, 21 (4), 673–681. doi: 10.1021/cm8025329
  25. Liu H.-H., Chang S.-L., Huang K.-H., Cao F.-Y., Cheng K.-Y., Sun H.-S., Lai Y.-Y., Cheng Y.-J. Macromolecules. 2020, 53 (18), 7740–7748. doi: 10.1021/acs.macromol.0c01297
  26. Kostyuchenko A.S., Yurpalov V.L., Kurowska A., Domagala W., Pron A., Fisyuk A.S. Beilstein J. Org. Chem. 2014, 10, 1596–1602. doi: 10.3762/bjoc.10.165
  27. Костюченко А.С., Ульянкин Е.Б., Железнова Т.Ю., Черненко С.А., Шацаускас А.Л., Абайдулина Д.Р., Быструшкин М.О., Самсоненко А.Л., Фисюк А.С. ХГС. 2019, 55, 1262-1268. [Kostyuchenko A.S., Ulyankin E.B., Zheleznova T.Yu., Chernenko S.A., Shatsauskas A.L., Abaidulina D.R., Bystrushkin M.O., Samsonenko A.L., Fisyuk A.S. Chem. Heterocycl. Compd. 2019, 55, 1262–1268.] doi: 10.1007/s10593-019-02610-6
  28. Fisyuk A.S., Demadrille R., Querner C., Zagorska M., Bleuse J., Pron A. New J. Chem. 2005, 29 (5), 707. doi: 10.1039/b415587d
  29. Kostyuchenko A.S., Kurowska A., Zassowski P., Zheleznova T.Yu., Ulyankin E.B., Domagala W., Pron A., Fisyuk A.S.J. Org. Chem. 2019, 84 (16), 10040–10049. doi: 10.1021/acs.joc.9b01216
  30. Zapala J., Knor M., Jaroch T., Maranda-Niedbala A., Kurach E., Kotwica K., Nowakowski R., Djurado D., Pecaut J., Zagorska M., Pron A. Langmuir 2013, 29 (47), 14503–14511. doi: 10.1021/la4034707
  31. Kotwica K., Kurach E., Louarn G., Kostyuchenko A.S., Fisyuk A.S., Zagorska M., Pron A. Electrochim. Acta. 2013, 111, 491–498. doi: 10.1016/j.electacta.2013.07.209
  32. Grykien R., Luszczynska B., Glowacki I., Kurach E., Rybakiewicz R., Kotwica K., Zagorska M., Pron A., Tassini P., Maglione M.G., Mauro A.D.G.D., Fasolino T., Rega R., Pandolfi G., Minarini C., Aprano S. Optical Mater. 2014, 37, 193–199. doi: 10.1016/j.optmat.2014.05.023
  33. Kotwica K., Kostyuchenko A.S., Data P., Marszalek T., Skorka L., Jaroch T., Kacka S., Zagorska M., Nowakowski R., Monkman A.P., Fisyuk A.S., Pisula W., Pron A. Chem. Eur. J. 2016, 22 (33), 11795–11806. doi: 10.1002/chem.201600984
  34. Ulyankin E.B., Kostyuchenko A.S., Chernenko S.A., Bystrushkin M.O., Samsonenko A.L., Shatsaus-kas A.L., Fisyuk A.S. Synthesis. 2021, 53 (14), 2422–2434. doi: 10.1055/a-1416-4924
  35. Kostyuchenko A.S., Averkov A.M., Fisyuk A.S. Org. Lett. 2014, 16 (7), 1833–1835. doi: 10.1021/ol500356w
  36. Trasatti S. Pure Appl. Chem. 1986, 58 (7), 955–966. doi: 10.1351/pac198658070955
  37. Williams A.T.R., Winfield S.A., Miller J.N. Analyst. 1983, 108 (1290), 1067. doi: 10.1039/an9830801067
  38. Brouwer A.M. Pure Appl. Chem. 2011, 83 (12), 2213–2228. doi: 10.1351/PAC-REP-10-09-31
  39. Allen M.W. Measurement of Fluorescence Quantum Yields, Thermo Fisher Scientific, technical note 52019, Madison, WI, USA, 2010.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024