Новые методы синтеза конденсированных малеимидов
- Авторы: Панов А.А.1
-
Учреждения:
- ФГБНУ “Научно-исследовательский институт по изысканию новых антибиотиков имени Г. Ф. Гаузе”
- Выпуск: Том 60, № 4 (2024)
- Страницы: 403-417
- Раздел: Статьи
- URL: https://archivog.com/0514-7492/article/view/672149
- DOI: https://doi.org/10.31857/S0514749224040014
- EDN: https://elibrary.ru/RZSIUO
- ID: 672149
Цитировать
Аннотация
В обзоре обобщены сведения из литературы по методам синтеза пиррол[3,4-b]пиррол-4,6 (1H,5H)-дионов, 4H-тиено[2,3-c]пиррол-4,6(5H)-дионов, 4H-пиррол[3,4-d]тиазол-4,6(5H)-дионов, 5H-пиррол[3,4-b]пиридин-5,7(6H)-дионов, 1H-пиррол[3,4-c]пиридин-1,3(2H)-дионов и других гетероциклов, аннелированных с малеимидным циклом, за последние 10 лет. Рассмотрены как методы построения малеимидного цикла, так и методы, основанные на реакционной способности N-замещенных малеимидов, 3,4-дигаломалеимидов или иных производных малеимида.
Ключевые слова
Об авторах
Алексей Александрович Панов
ФГБНУ “Научно-исследовательский институт по изысканию новых антибиотиков имени Г. Ф. Гаузе”
Автор, ответственный за переписку.
Email: 7745243@mail.ru
ORCID iD: 0000-0002-6654-4081
Россия, Москва
Список литературы
- Cappuccino C., Catalano L., Marin F., Dushaq G., Raj G., Rasras M., Rezgui R., Zambianchi M., Melucci M., Naumov P., Maini L. Cryst. Growth Des. 2020, 20, 884–891. doi: 10.1021/acs.cgd.9b01281
- Cappuccino C., Canola S., Montanari G., Lopez S. G., Toffanin S., Melucci M., Negri F., Maini L. Cryst. Growth Des. 2019, 19, 2594–2603. doi: 10.1021/acs.cgd.8b01712
- Chen K., Xie H., Jiang K., Mao J. Chem. Phys. Lett. 2016, 657, 135–141. doi: 10.1016/j.cplett.2016.05.069
- Benz S., Lopez-Andarias J., Mareda J., Sakai N., Matile S. Angew. Chem., Int. Ed. 2017, 56, 812–815. doi: 10.1002/anie.201611019
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Imoto H., Fujii R., Naka K. Eur. J. Org. Chem. 2018, 837–843. doi: 10.1002/ejoc.201701479
- Danilenko V.N., Simonov AY., Lakatosh S. A., Kubbutat M. H.G., Totzke F., Schachtele C., Elizarov S. M., Bekker O. B., Printsevskaya S. S., Luzikov Y. N., Reznikova M. I., Shtil A. A., Preobrazhenskaya M. N. J. Med. Chem. 2008, 51, 7731–7736. doi: 10.1021/jm800758s
- Vandyshev D.Y., Shikhaliev K. S. Molecules. 2022, 27, 5268. doi: 10.3390/molecules27165268
- Chung C.-Y., Tseng C.-C., Li S.-M., Tsai S.-E., Lin H.-Y., Wong F. F. Molecules 2021, 26, 2907. doi: 10.3390/molecules26102907
- Panov A.A., Simonov A. Y., Lavrenov S. N., Lakatosh S. A., Trenin A. S. Chem. Heterocycl. Compd. 2018, 54, 103–113. doi: 10.1007/s10593–018–2240-z
- Volvoikar P., Torney P., Tetrahedron 2021, 82, 131756. doi: 10.1016/j.tet.2020.131756
- Bansal M., Upadhyay C., Poonam; Rathi S. K.B. RSC Med. Chem. 2021, 12, 1854–1867. doi: 10.1039/D1MD00244A
- Das S. New J. Chem. 2021, 45, 20519–20536. doi: 10.1039/D1NJ03924E
- Ershov O.V., Ershova A. I. Chem. Heterocycl. Compd. 2020, 56, 518–520. doi: 10.1007/s10593–020–02693–6
- Kavitha K., Praveena K. S.S., Ramarao E. V.V.S., Murthy N. Y.S., Pal S. Curr. Org. Chem. 2016, 20, 1955–2001. doi: 10.2174/1385272820666160530145014
- Mikie T., Okamoto K., Iwasaki Y., Koganezawa T., Sumiya M., Okamoto T., Osaka I. Chem. Mater. 2022, 34, 2717–2729. doi: 10.1021/acs.chemmater.1c04196
- Kobayashi K., Kunimura R., Kogen H. Molecules 2019, 24, 4230. doi: 10.3390/molecules24234230
- Caruso M., Petroselli M., Cametti M. ChemistrySelect 2021, 6, 12975–12980. doi: 10.1002/slct.202103792
- Khitrov M.D., Platonov D. N., Belyy A. Yu., Trainov K. P., Velmiskina J. A., Medvedev M. G., Salikov R. F., Tomilov Y. V. Dyes Pigm. 2022, 203, 110344. doi: 10.1016/j.dyepig.2022.110344
- Kumar A., Banerjee S., Roy P., Sondhi S. M., Sharma A. Bioorg. Med. Chem. Lett. 2017, 27, 501–504. doi: 10.1016/j.bmcl.2016.12.031
- Yin Z., Shi W., Wu X.-F. J. Org. Chem 2023, 88, 4975–4994. doi: 10.1021/acs.joc.2c00655
- Kang C., Xu J., Li X., Wang S., Jiang G., Ji F. J. Org. Chem. 2022, 87, 10390–10397. doi: 10.1021/acs.joc.2c00673
- Ram S., Mehara P., Kumar A., Sharma A. K., Chauhan A. S., Kumar A., Das P. Mol. Catal. 2022, 530, 112606. doi: 10.1016/j.mcat.2022.112606
- Wang Y., Zhou Y., Lei M., Hou J., Jin Q., Guo D., Wu W. Tetrahedron 2019, 75, 1180–1185. doi: 10.1016/j.tet.2019.01.023
- Fu L.-Y., Ying J., Wu X.-F. J. Org. Chem. 2019, 84, 12648–12655. doi: 10.1021/acs.joc.9b01890
- Panda B., Albano G. Catalysts 2021, 11, 1531. doi: 10.3390/catal11121531
- Zeng L., Li H., Tang S., Gao X., Deng Y., Zhang G., Pao C.-W., Chen J.-L., Lee J.-F., Lei A. ACS Catal. 2018, 8, 5448–5453. doi: 10.1021/acscatal.8b00683
- Barsu N., Kalsia D., Sundararaju B. Catal. Sci. Technol. 2018, 8, 5963–5969. doi: 10.1039/C8CY02060D
- Chen L.-P., Chen J.-F., Zhang Y.-J., He X.-Y., Han Y.-F., Xiao Y.-T., Lv G.-F., Lu X., Teng F., Sun Q., Li J.-H. Org. Chem. Front. 2021, 8, 6067–6073. doi: 10.1039/D1QO01147B
- Takacs A., Varga G. M., Kardos J., Kollar L. Tetrahedron 2017, 73, 2131–2138. doi: 10.1016/j.tet.2017.02.062
- Favaretto L., Zambianchi M., Lopez S. G., Mazzanti A., Zanardi C., Seeber R., Gentili D., Valle F., Benvenuti E., Muccini M., Ruani G., Mercuri F., Milita S., Liscio F., Cavallini M., Toffanin S., Melucci M. J. Mater. Chem. C. 2017, 5, 10320–10331. doi: 10.1039/C7TC03930A
- Ikai T., Kudo T., Nagaki M., Yamamoto T., Maeda K., Kanoh S. Polymer. 2014, 55, 2139–2145. doi: 10.1016/j.polymer.2014.03.021
- Maini L., Gallino F., Zambianchi M., Durso M., Gazzano M., Rubini K., Gentili D., Manet I., Muccini M., Toffanin S., Cavallini M., Melucci M. Chem. Commun. 2015, 51, 2033–2035. doi: 10.1039/C4CC09177A
- Punzi A., Coppi D. I., Matera S., Capozzi M. A.M., Operamolla A., Ragni R., Babudri F., Farinola G. M. Org. Lett. 2017, 19, 4754–4757. https://doi.org/10.1021/acs.orglett.7b02114
- Warnan J., Labban A. E., Cabanetos C., Hoke E. T., Shukla P. K., Risko C., Bredas J.-L., McGehee M.D., Beaujuge P. M. Chem. Mater. 2014, 26, 2299–2306. doi: 10.1021/cm500172w
- Shi W., Sun S., Hu Y., Gao T., Peng Y., Wu M., Guo H., Wang J., Tetrahedron Lett. 2015, 56, 3861–3863. doi: 10.1016/j.tetlet.2015.04.097
- Dagoneau D., Kolleth A., Lumbroso A., Tanriver G., Catak S., Sulzer-Mosse S., De Mesmaeker A. Helv. Chim. Acta 2019, 102, e19000. doi: 10.1002/hlca.201900031
- Katritzky A.R., Fan W.-Q. J. Heterocycl. Chem. 1988, 25, 901–906. doi: 10.1002/jhet.5570250338
- Kharitonova O.V., Solomentseva T. A., Golubtsov I. S., Mironov A. F. Russ. J. Org. Chem. 2014, 50, 45–47. doi: 10.1134/S1070428014010084
- Huang H.-M., Li Y.-J., Ye Q., Yu W.-B., Han L., Jia J.-H., Gao J.-R. J. Org. Chem. 2014, 79, 1084–1092. doi: 10.1021/jo402540j
- Koohgard M., Hosseinpour Z., Hosseini-Sarvari M. Tetrahedron 2021, 89, 132166. doi: 10.1016/j.tet.2021.132166
- Wang L., Ma T., Qiao M., Wu Q., Shi D., Xiao W. Synthesis 2019, 51, 522–529. doi: 10.1055/s-0037–1610907
- Fujiya A., Tanaka M., Yamaguchi E., Tada N., Itoh A. J. Org. Chem. 2016, 81, 7262–7270. doi: 10.1021/acs.joc.6b00439
- Firoozi S., Hosseini-Sarvari M., Koohgard M. Green Chem. 2018, 20, 5540–5549. doi: 10.1039/C8GC03297A
- Xu Y.-W., Wang J., Wang G., Zhen L. J. Org. Chem. 2021, 86, 91–102. doi: 10.1021/acs.joc.0c01567
- Nekkanti S., Kumar N. P., Sharma P., Kamal A., Nachtigall F. M., Forero-Doria O., Santos L. S., Shankaraiah N. RSC Adv. 2016, 6, 2671–2677. doi: 10.1039/C5RA24629F
- Wang Q., Yuan T., Liu Q., Xu Y., Xie G., Lv X., Ding S., Wang X., Li C. Chem. Commun. 2019, 55, 8398–8401. doi: 10.1039/C9CC04336E
- Zhang Q., Wang B., Ma H., Ablajan K. New J. Chem. 2019, 43, 17000–17003. doi: 10.1039/C9NJ03076J
- Zhou K., Bao M., Huang J., Kang Z., Xu X., Hu W., Qian Y. Org. Biomol. Chem. 2020, 18, 409–414. doi: 10.1039/C9OB02571E
- Zhu J.-N., Wang W.-K., Jin Z.-H., Wang Q.-K., Zhao S.-Y. Org. Lett. 2019, 21, 5046–5050. doi: 10.1021/acs.orglett.9b01641
- Lv K.-H., Zhao Q.-S., Zhao K.-H., Yang J.-M., Yan S.-J. J. Org. Chem. 2022, 87, 15301–15311. doi: 10.1021/acs.joc.2c01879
- Chupakhin E., Bakulina O., Dar’in D., Krasavin M. Tetrahedron Lett. 2021, 85, 153467. doi: 10.1016/j.tetlet.2021.153467
- Zhu J.-N., Chen L.-L., Zhou R.-X., Li B., Shao Z.-Y., Zhao S.-Y. Org. Lett. 2017, 19, 6044–6047. doi: 10.1021/acs.orglett.7b02670
- Li H., Zhang S., Feng X., Yu X., Yamamoto Y., Bao M. Org. Lett. 2019, 21, 8563–8567. doi: 10.1021/acs.orglett.9b03107
- Botes D.S., Khorasani S., Duminy W., Levendis D. C., Fernandes M. A., Cryst. Growth Des. 2020, 20, 291–299. doi: 10.1021/acs.cgd.9b01167
- Yang Z.-H., Tan H.-R., An Y.-L., Zhao Y.-W., Lin H.-P., Zhao S.-Y. Adv. Synth. Catal. 2018, 360, 173–179. doi: 10.1002/adsc.201700955
- Li X., Zhang X., Zhang F., Luo X., Luo H. Adv. Synth. Catal. 2022, 364, 1683–1688. doi: 10.1002/adsc.202200251
- Zhang Y., Jiang W., Bao X., Qiu Y., Yuan Y., Yang C., Huo C. Chin. J. Chem. 2021, 39, 3238–3244. doi: 10.1002/cjoc.202100401
- Lossouarn A., Renault K., Bailly L., Frisby A., Le Nahenec-Martel P., Renard P.-Y., Sabot C., Org. Biomol. Chem. 2020, 18, 3874–3887. doi: 10.1039/D0OB00403K
- Klyuchko S.V., Chumachenko S. A., Shablykin O. V., Brovarets V. S. Russ. J. Gen. Chem. 2021, 91, 348–356. doi: 10.1134/S1070363221030026
- Zhang X., Dhawan G., Muthengi A., Liu S., Wang W., Legrisa M., Zhang W. Green Chem. 2017, 19, 3851–3855. doi: 10.1039/C7GC01380A
- Zhao H., Wang T., Qing Z., Zhai H. Chem. Commun. 2020, 56, 5524–5527. doi: 10.1039/D0CC01582B
- Pati B.V., Sagara P. S., Ghosh A., Mohanty S. R., Ravikumar P. C. J. Org. Chem. 2021, 86, 6551–6565. doi: 10.1021/acs.joc.1c00367
- Shinde V. N., Rangan K., Kumar D., Kumar A. J. Org. Chem. 2021, 86, 2328–2338. doi: 10.1021/acs.joc.0c02467
- Li B., Guo C., Shen N., Zhang X., Fan X. Org. Chem. Front. 2020, 7, 3698–3704. doi: 10.1039/D0QO01109F
- Lavrard H., Rodriguez F., Delfourne E., Bioorg. Med. Chem. 2014, 22, 4961–4967. doi: 10.1016/j.bmc.2014.06.028
- Lavrard H., Salvetti B., Mathieu V., Rodriguez F., Kiss R. Delfourne E. ChemMedChem 2015, 10, 607–609. doi: 10.1002/cmdc.201500025
- Salvetti B., Lavrard H., Delfourne E., Tetrahedron Lett. 2014, 55, 6463–6464. doi: 10.1016/j.tetlet.2014.10.002
- He J., Bai Z.-Q., Yuan P.-F., Wu L.-Z., Liu Q. ACS Catal. 2021, 11, 446–455. doi: 10.1021/acscatal.0c05005
- Aknin K., Bontemps A., Farce A., Merlet E., Belmont P., Helissey P., Chavatte P., Sari M.-A., Giorgi-Renault S., Desbene-Finck S. J. Enzyme Inhib. Med. Chem. 2022, 37, 252–268. doi: 10.1080/14756366.2021.2001806
- Jiang Y.-H., Xiao M., Yan C.-G. RSC Adv. 2016, 6, 35609–35616. doi: 10.1039/C6RA03165J
- Xiao M., Jiang Y.-H., Yan C.-G. ChemistrySelect 2017, 2, 2803–2806. doi: 10.1002/slct.201602042
- Xiao M., Sun Q., Sun J., Yan C.-G. Eur. J. Org. Chem. 2017, 46, 6861–6866. doi: 10.1002/ejoc.201701356
- Jiang Y., Yan C. Chin. J. Chem. 2016, 34, 1255–1262. doi: 10.1002/cjoc.201600504
- Du F., Li S.-J., Jiang K., Zeng R., Pan X.-C., Lan Y., Chen Y.-C., Wei Y., Angew. Chem., Int. Ed. 2020, 59, 23755–23762. doi: 10.1002/anie.202010752
- Zhao J., Chen M., Wu M., Shi L., Li H. Asian J. Org. Chem. 2022, 11, e202200042. doi: 10.1002/ajoc.202200042
- Singh B., Bhatia R., Pani B., Gupta D. J. Mol. Struct. 2020, 1200, 127084. doi: 10.1016/j.molstruc.2019.127084
- Zhang Z., Wang S., Hu C., Ma N., Zhang G., Liu Q. Tetrahedron 2018, 74, 7472–7479. doi: 10.1016/j.tet.2018.11.023
- Vepreva A., Kantin G., Krasavin M., Dar’in D. Synthesis 2022, 54, 5128–5138. doi: 10.1055/s-0037–1610790
- Inyutina A., Kantin G., Dar’in D., Krasavin M. J. Org. Chem. 2021, 86, 13673–13683. doi: 10.1021/acs.joc.1c01710
- Laha D., Meher K. B., Bankar O. S., Bhat R. G. Asian J. Org. Chem. 2022, 11, e202200062. doi: 10.1002/ajoc.202200062
- Inyutina A., Dar’in D., Kantina G., Krasavin M. Org. Biomol. Chem. 2021, 19, 5068–5071. doi: 10.1039/D1OB00773D
- Brenet S., Baptiste B., Philouze C., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 1041–1045. doi: 10.1002/ejoc.201201525
- Brenet S., Berthiol F., Einhorn J. Eur. J. Org. Chem. 2013, 2013, 8094–8096. doi: 10.1002/ejoc.201301329
Дополнительные файлы
