Подвижность кислорода допированных самарием никелатов неодима, спеченных электронными пучками
- Авторы: Садыков В.А.1, Садовская Е.М.1, Беспалко Ю.Н.1, Смаль Е.А.1, Булавченко О.А.1, Еремеев Н.Ф.1, Просвирин И.П.1, Михайленко М.А.2, Коробейников М.В.3
-
Учреждения:
- Институт катализа им. Г.К. Борескова СО РАН
- Институт химии твердого тела и механохимии СО РАН
- Институт ядерной физики им. Г.И. Будкера СО РАН
- Выпуск: Том 61, № 2 (2025)
- Страницы: 140-152
- Раздел: Специальный выпуск на основе докладов на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела” (Черноголовка, 16–23 июня 2024 г.)
- URL: https://archivog.com/0424-8570/article/view/684447
- DOI: https://doi.org/10.31857/S0424857025020021
- EDN: https://elibrary.ru/DKLPCX
- ID: 684447
Цитировать
Аннотация
Фазы Раддлесдена–Поппера являются известными материалами электрохимических устройств, таких как твердооксидные топливные элементы/электролизеры, кислородпроводящие мембраны. Допирование A-положения лантаноидами меньшего радиуса может помочь увеличить кислородную подвижность, однако данный вопрос до сих пор мало исследован. Настоящая работа посвящена изучению фазового состава и транспортных свойств допированных Sm никелатов Nd, спеченных радиационно-термическим методом с использованием электронных пучков. Nd2–xSmxNiO4+δ (x = 0.2, 0.4) были синтезированы модифицированным методом Пекини и спечены электронными пучками при 1150–1250°C. Полученные материалы охарактеризованы с помощью рентгенофазового анализа, рентгеновской фотоэлектронной спектроскопии и термопрограммированного изотопного обмена с C18O2 в проточном реакторе. Кислород поверхности материалов представлен в виде двух форм с различной энергией связи. По данным термопрограммированного изотопного обмена кислорода, для образцов характерна неоднородность подвижности кислорода, причем при x = 0.4 образуется канал медленной диффузии. Данные особенности диффузии кислорода, по-видимому, связаны с влиянием допирования и радиационно-термического спекания на структуру с образованием примесных фаз, нарушением кооперативного механизма диффузии за счет локальных дефектов и изменения состава поверхности и междоменных границ.
Полный текст

Об авторах
В. А. Садыков
Институт катализа им. Г.К. Борескова СО РАН
Автор, ответственный за переписку.
Email: sadykov@catalysis.ru
Россия, Новосибирск
Е. М. Садовская
Институт катализа им. Г.К. Борескова СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
Ю. Н. Беспалко
Институт катализа им. Г.К. Борескова СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
Е. А. Смаль
Институт катализа им. Г.К. Борескова СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
О. А. Булавченко
Институт катализа им. Г.К. Борескова СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
Н. Ф. Еремеев
Институт катализа им. Г.К. Борескова СО РАН
Email: yeremeev21@catalysis.ru
Россия, Новосибирск
И. П. Просвирин
Институт катализа им. Г.К. Борескова СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
М. А. Михайленко
Институт химии твердого тела и механохимии СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
М. В. Коробейников
Институт ядерной физики им. Г.И. Будкера СО РАН
Email: sadykov@catalysis.ru
Россия, Новосибирск
Список литературы
- Afroze, S., Reza, M.S., Amin, M.R., Taweekun, J., and Azad, A.K., Progress in nanomaterials fabrication and their prospects in artificial intelligence towards solid oxide fuel cells: A review, Int. J. Hydrogen Energy, 2024, vol. 52C, p. 216. https://doi.org/10.1016/j.ijhydene.2022.11.335
- Yadav, A.K., Sinha, S., and Kumar, A., Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review, Int. J. Hydrogen Energy, 2024, vol. 59, p. 1080. https://doi.org/10.1016/j.ijhydene.2024.02.124
- Li, M., Wang, J., Chen, Z., Qian, X., Sun, C., Gan, D., Xiong, K., Rao, M., Chen, C., and Li, X., A comprehensive review of thermal management in solid oxide fuel cells: Focus on burners, heat exchangers, and strategies, Energies, 2024, vol. 17, no. 5, p. 1005. https://doi.org/10.3390/en17051005
- Yuan, Q., Li, X., Han, S., Wang, S., Wang, M., Chen, R., Kudashev, S., Wei, T., and Chen, D., Performance analysis and optimization of SOFC/GT hybrid systems: A review, Energies, 2024, vol. 17, no. 5, p. 1265. https://doi.org/10.3390/en17051265
- Helal, H., Ahrouch, M., Rabehi, A., Zappa, D., and Comini, E., Nanostructured materials for enhanced performance of solid oxide fuel cells: A comprehensive review, Crystals, 2024, vol. 14, no. 4, p. 306. https://doi.org/10.3390/cryst14040306
- Kalinina, E. and Pikalova, E., Opportunities, challenges and prospects for electrodeposition of thin-film functional layers in solid oxide fuel cell technology, Materials, 2021, vol. 14, no. 19, p. 5584. https://doi.org/10.3390/ma14195584
- Iqbal, M.A., Jaiswal, S.K., and Quaff, A.R., Increasing Efficiency of Oxygen Separation from Air Through Ceramic Membranes – A Review, in Fluid Mechanics and Hydraulics, HYDRO 2021. Lecture Notes in Civil Engineering, vol. 314, Timbadiya, P.V., Patel, P.L., Singh, V.P., and Barman, B., Eds, Singapore: Springer, 2023, p. 533. https://doi.org/10.1007/978-981-19-9151-6_43
- Chen, G., Widenmeyer, M., Yu, X., Han, N., Tan, X., Homm, G., Liu, S., and Weidenkaff, A., Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors, J. Am. Ceram. Soc., 2024, vol. 107, no. 3, p. 1490. https://doi.org/10.1111/jace.19411
- Yan, F., Qian, J., Wang, S., and Zhai, J., Progress and outlook on lead-free ceramics for energy storage applications, Nano Energy, 2024, vol. 123, p. 109394. https://doi.org/10.1016/j.nanoen.2024.109394
- Hu, Z., Yin, H., Li, M., Li, J., and Zhu, H., Research and developments of ceramic-reinforced steel matrix composites – A comprehensive review, Int. J. Adv. Manuf. Technol., 2024, vol. 131, p. 125. https://doi.org/10.1007/s00170-024-13123-8
- Zhang, S., Qiu, Q., Zeng, C., Paik, K.-W., He, P., and Zhang, S., A review on heating mechanism, materials and heating parameters of microwave hybrid heated joining technique, J. Manuf. Process., 2024, vol. 116, p. 176. https://doi.org/10.1016/j.jmapro.2024.02.055
- Sadykov, V., Usoltsev, V., Fedorova, Yu., Mezentseva, N., Krieger, T., Eremeev, N., Arapova, M., Ishchenko, A., Salanov, A., Pelipenko, V., Muzykantov, V., Ulikhin, A., Uvarov, N., Bobrenok, O., Vlasov, A., Korobeynikov, M., Bryazgin, A., Arzhannikov, A., Kalinin, P., Smorygo, O., and Thumm, M., Advanced sintering techniques in design of planar IT SOFC and supported oxygen separation membranes, in Sintering of Ceramics – New Emerging Techniques, Lakshmanan, A., Ed, Vienna: InTech, 2012, p. 121. https://doi.org/10.5772/34958
- Lisitsyn, V., Tulegenova, A., Golkovski, M., Polisadova, E., Lisitsyna, L., Mussakhanov, D., and Alpyssova, G., Radiation synthesis of high-temperature wide-bandgap ceramics, Micromachines, 2023, vol. 14, no. 12, p. 2193. https://doi.org/10.3390/mi14122193
- Angappan, G., Sivaraj, S., Mohankumar, M., Vaidyanathan, E., and Joseph, A., Recent developments in additive manufacturing equipment's and its processes, in Additive Manufacturing with Novel Materials: Processes, Properties and Applications, Rajasekar, R., Moganapriya, C., and Sathish Kumar, P., Eds, Scrivener Publishing LLC, 2024, p. 23. https://doi.org/10.1002/9781394198085.ch2
- Burdovitsin, V., Dvilis, E., Zenin, A., Klimov, A., Oks, E., Sokolov, V., Kachaev, A.A., and Khasanov, O.L., Electron beam sintering of zirconia ceramics, Adv. Mat. Res., 2014, vol. 872, p. 150. https://doi.org/10.4028/www.scientific.net/AMR.872.150
- Martin, B., Amos, D., Brehob, E., van Hest, M.F., and Druffel, T., Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes, Appl. Energy, 2022, vol. 307, p. 118200. https://doi.org/10.1016/j.apenergy.2021.118200
- Ancharova, U., Mikhailenko, M., Tolochko, B., Lyakhov, N., Korobeinikov, M., Bryazgin, A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757–899X/81/1/012122
- Bespalko, Yu., Eremeev, N., Sadovskaya, E., Krieger, T., Bulavchenko, O., Suprun, E., Mikhailenko, M., Korobeynikov, M., and Sadykov, V., Synthesis and oxygen mobility of bismuth cerates and titanates with pyrochlore structure, Membranes, 2023, vol. 13, no. 6, p. 598. https://doi.org/10.3390/membranes13060598
- Садыков, В.А., Садовская, Е.М., Еремеев, Н.Ф., Скрябин, П.И., Краснов, А.В., Беспалко, Ю.Н., Павлова, С.Н., Федорова, Ю.Е., Пикалова, Е.Ю., Шляхтина А.В. Подвижность кислорода материалов твердооксидных топливных элементов и каталитических мембран (обзор). Электрохимия. 2019. Т. 55. С. 899. [Sadykov, V.A., Sadovskaya, E.M., Eremeev, N.F., Skriabin, P.I., Krasnov, A.V., Bespalko, Yu.N., Pavlova, S.N., Fedorova, Yu.E., Pikalova, E. Yu., and Shlyakhtina, A.V., Oxygen mobility in the materials for solid oxide fuel cells and catalytic membranes (review), Russ. J. Electrochem., 2019, vol. 55, p. 701.] https://doi.org/10.1134/S1023193519080147
- Sadykov, V., Eremeev, N., Sadovskaya, E., Bespalko, Yu., Simonov, M., Arapova, M., and Smal, E., Nanomaterials with oxygen mobility for catalysts of biofuels transformation into syngas, SOFC and oxygen/hydrogen separation membranes: Design and performance, Catal. Today, 2023, vol. 423, p. 113936. https://doi.org/10.1016/j.cattod.2022.10.018
- Sadykov, V., Pikalova, E., Sadovskaya, E., Shlyakhtina, A., Filonova, E., and Eremeev, N., Design of mixed ionic-electronic materials for permselective membranes and solid oxide fuel cells based on their oxygen and hydrogen mobility, Membranes, 2023, vol. 13, no. 8, p. 698. https://doi.org/10.3390/membranes13080698
- Baratov, S., Filonova, E., Ivanova, A., Hanif, M.B., Irshad, M., Khan, M.Z., Motola, M., Rauf, D., and Medvedev, D., Current and further trajectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews, J. Energy Chem., 2024, vol. 94, p. 302. https://doi.org/10.1016/j.jechem.2024.02.047
- Hussain, S. and Yangping, L., Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte, Energy Transit., 2020, vol. 4, p. 113. https://doi.org/10.1007/s41825-020-00029-8
- Pikalova, E. Yu., Guseva, E.M., and Filonova, E.A., Short review on recent studies and prospects of application of rare-earth-doped La2NiO4+δ as air electrodes for solid-oxide electrochemical cells, Electrochem. Mater. Technol., 2023, vol. 2, p. 20232025. https://doi.org/10.15826/elmattech.2023.2.025
- Nande, A., Chaudhari, V., Punde, J.D., and Dhoble, S.J., Rare-earth doped cathode materials for solid oxide fuel cells, in Emerging Energy Materials, Nair, G., Nagabhushana, H., Dhoble, N., and Dhoble, S.J., Eds, Boca Raton: CRC Press, 2024, p. 32. https://doi.org/10.1201/9781003315261-3
- Oh, S., Kim, H., Jeong, I., Kim, D., Yu, H., and Lee, K.T., Recent progress in oxygen electrodes for protonic ceramic electrochemical cells, J. Korean Ceram. Soc., 2024, vol. 61, p. 224. https://doi.org/10.1007/s43207-023-00360-y
- Tarutin, A.P., Lyagaeva, J.G., Medvedev, D.A., Bi, L., and Yaremchenko, A.A., Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells, J. Mater. Chem. A, 2021, vol. 9, p. 154. https://doi.org/10.1039/D0TA08132A
- Li, X. and Benedek, N.A., Enhancement of ionic transport in complex oxides through soft lattice modes and epitaxial strain, Chem. Mater., 2015, vol. 27, p. 2647. https://doi.org/10.1021/acs.chemmater.5b00445
- Yang, S., Liu, G., Lee, Y.-L., Bassat, J.-M, Gamon, J., Villesuzanne, A., Pietras, J., Zhou, X.-D., and Zhong, Y., A systematic ab initio study of vacancy formation energy, diffusivity, and ionic conductivity of Ln2NiO4+δ (Ln = La, Nd, Pr), J. Power Sources, 2023, vol. 576, p. 233200. https://doi.org/10.1016/j.jpowsour.2023.233200
- Bamburov, A., Naumovich, Ye., Khalyavin, D.D., and Yaremchenko, A.A., Intolerance of the Ruddlesden–Popper La2NiO4+δ structure to A-site cation deficiency, Chem. Mater., 2023, vol. 35, no. 19, p. 8145. https://doi.org/10.1021/acs.chemmater.3c01594
- Pikalova, E., Eremeev, N., Sadovskaya, E., Sadykov V., Tsvinkinberg, V., Pikalova, N., Kolchugin, A., Vylkov, A., Baynov, I., and Filonova, E., Influence of the substitution with rare earth elements on the properties of layered lanthanum nickelate – Part 1: Structure, oxygen transport and electrochemistry evaluation, Solid State Ionics, 2022, vol. 379, p. 115903. https://doi.org/10.1016/j.ssi.2022.115903
- Pikalova, E., Sadykov, V., Tsvinkinberg, V., Kolchugin, A., Zhulanova, T., Guseva, E., Eremeev, N., Sadovskaya, E., Belyaev, V., and Filonova, E., Boosting the oxygen transport kinetics and functional properties of La2NiO4+δ via partial La-to-Sm substitution, J. Alloys and Compd., 2024, vol. 980, p. 173648. https://doi.org/10.1016/j.jallcom.2024.173648
- Vibhu, V., Rougier, A., Nicollet, C., Flura, A., Grenier, J.-C., and Bassat, J.-M., La2–xPrxNiO4+δ as suitable cathodes for metal supported SOFCs, Solid State Ionics, 2015, vol. 278, p. 32. https://doi.org/10.1016/j.ssi.2015.05.005
- Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., Belyaev, V.D., Tsvinkinberg, V.A., and Pikalova, E. Yu., Oxide ionic transport features in Gd-doped La nickelates, Solid State Ionics, 2020, vol. 357, p. 115462. https://doi.org/10.1016/j.ssi.2020.115462
- Sadykov, V.A., Sadovskaya, E.M., Bespalko, Yu.N., Smal’, E.A., Eremeev, N.F., Prosvirin, I.P., Bulavchenko, O.A., Mikhailenko, M.A., and Korobeynikov, M.V., Structural, surface and oxygen transport properties of Sm-doped Nd nickelates, Solid State Ionics, 2024, vol. 412, p. 116596. https://doi.org/10.1016/j.ssi.2024.116596
- Pikalova, E. Yu., Sadykov, V.A., Filonova, E.A., Eremeev, N.F., Sadovskaya, E.M., Pikalov, S.M., Bogdanovich, N.M., Lyagaeva, J.G., Kolchugin, A.A., Vedmid’, L.B., Ishchenko, A.V., and Goncharov, V.B., Structure, oxygen transport properties and electrode performance of Ca-substituted Nd2NiO4, Solid State Ionics, 2019, vol. 335, p. 53. https://doi.org/10.1016/j.ssi.2019.02.012
- Stoyanovskii, V.O., Vedyagin, A.A., Volodin, A.M., and Bespalko, Yu.N., Effect of carbon shell on stabilization of single-phase lanthanum and praseodymium hexaaluminates prepared by a modified Pechini method, Ceram. Int., 2020, vol. 46, no. 18A, p. 29150. https://doi.org/10.1016/j.ceramint.2020.08.088
- Ancharova, U.V., Mikhailenko, M.A., Tolochko, B.P., Lyakhov, N.Z., Korobeinikov, M.V., Bryazgin, A.A., Bezuglov, V.V., Shtarklev, E.A., Vlasov, A. Yu., and Vinokurov, Z.S., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation-thermal reactions, IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 81, p. 012122. https://doi.org/10.1088/1757–899X/81/1/012122
- HighScore Plus | XRD Analysis Software | Malvern Panalytical. https://www.malvernpanalytical.com/en/products/category/software/x-ray-diffraction-software/highscore-with-plus-option (дата обращения: 14.10.2024).
- Kwok, R., XPSPeak Software (Version 4.1). http://xpspeak.software.informer.com/4.1/ (дата обращения: 31.03.2024).
- Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, MN, USA: Perkin-Elmer Corporation, 1992, 261 p.
- Scofield, J.H., Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectros. Relat. Phenom., 1976, vol. 8, no. 2, p. 129. https://doi.org/10.1016/0368-2048(76)80015-1
- Pikalova, E. Yu., Kolchugin, A.A., Sadykov, V.A., Sadovskaya, E.M., Filonova, E.A., Eremeev, N.F., and Bogdanovich, N.M., Structure, transport properties and electrochemical behavior of the layered lanthanide nickelates doped with calcium, Int. J. Hydrogen Energy, 2018, vol. 43, no. 36, p. 17373. https://doi.org/10.1016/j.ijhydene.2018.07.115
- Sadykov, V.A., Pikalova, E. Yu., Kolchugin, A.A., Filonova, E.A., Sadovskaya, E.M., Eremeev, N.F., Ishchenko, A.V., Fetisov, A.V., and Pikalov, S.M., Oxygen transport properties of Ca-doped Pr2NiO4, Solid State Ionics, 2018, vol. 317, p. 234. https://doi.org/10.1016/j.ssi.2018.01.035
- Nezhad, P.D.K., Bekheet, M.F., Bonmassar, N., Gili, A., Kamutzki, F., Gurlo, A., Doran, A., Schwarz, S., Bernardi, J., Praetz, S., and Niaei, A., Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts, Catal. Sci. Technol., 2022, vol. 12, no. 4, p. 1229. https://doi.org/10.1039/D1CY02044G
- Isacfranklin, M., Yuvakkumar, R., Ravi, G., Thambidurai, M., Nguyen, H.D., and Velauthapillai, D., SmNiO3/SWCNT perovskite composite for hybrid supercapacitor, J. Energy Storage, 2023, vol. 68, p. 107786. https://doi.org/10.1016/j.est.2023.107786
- Maksimchuk, T., Filonova, E., Mishchenko, D., Eremeev, N., Sadovskaya, E., Bobrikov, I., Fetisov, A., Pikalova, N., Kolchugin, A., Shmakov, A., Sadykov, V., and Pikalova, E., High-temperature behavior, oxygen transport properties, and electrochemical performance of Cu-substituted Nd1.6Ca0.4NiO4+δ electrode materials, Appl. Sci., 2022, vol. 12, no. 8, p. 3747. https://doi.org/10.3390/app12083747
- Jiang, N., Electron beam damage in oxides: A review, Rep. Prog. Phys., 2015, vol. 79, no. 1, p. 016501. https://doi.org/10.1088/0034-4885/79/1/016501
- Puglisi, O., Marletta, G., and Torrisi, A., Oxygen depletion in electron beam bombarded glass surfaces studied by XPS, J. Non-Cryst. Solids, 1983, vol. 55, no. 3, p. 433. https://doi.org/10.1016/0022-3093(83)90047-9
- Ding, Y., Pradel, K.C., and Wang, Z.L., In situ transmission electron microscopy observation of ZnO polar and non-polar surfaces structure evolution under electron beam irradiation, J. Appl. Phys., 2016, vol. 119, no. 1, p. 015305. https://doi.org/10.1063/1.4939618
- Jun, J., Dhayal, M., Shin, J.-H., Kim, J.-C., and Getoff, N., Surface properties and photoactivity of TiO2 treated with electron beam, Radiat. Phys. Chem., 2006, vol. 75, no. 5, p. 583. https://doi.org/10.1016/j.radphyschem.2005.10.015
- Stevens-Kalceff, M.A., Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs, Phys. Rev. Lett., 2000, vol. 84, no. 14, p. 3137. https://doi.org/10.1103/physrevlett.84.3137
- Lee, D. and Lee, H.N., Controlling oxygen mobility in Ruddlesden–Popper oxides, Materials, 2017, vol. 10, no. 4, p. 368. https://doi.org/10.3390/ma10040368
- Nirala, G., Yadav, D., and Upadhyay, S., Ruddlesden–Popper phase A2BO4 oxides: Recent studies on structure, electrical, dielectric, and optical properties, J. Adv. Ceram., 2020, vol. 9, p. 129. https://doi.org/10.1007/s40145-020-0365-x
- Wang, Y., Chen, J., Liu, K., Wang, M., Song, D., and Wang, K., Computational screening of La2NiO4+δ cathodes with Ni site doping for solid oxide fuel cells, Inorg. Chem., 2023, vol. 62, no. 19, p. 7574. https://doi.org/10.1021/acs.inorgchem.3c01044
- Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sec. A, 1976, vol. 32, p. 751. https://doi.org/10.1107/S0567739476001551
- Wang, C., Miao, H., Zhang, X., Huang, J., and Yuan, J., On Fe-based perovskite electrodes for symmetrical reversible solid oxide cells–A review, J. Power Sources, 2024, vol. 596, p. 234112. https://doi.org/10.1016/j.jpowsour.2024.234112
- Boileau, A., Capon, F., Coustel, R., Laffez, P., Barrat, S., and Pierson, J.F., Inductive effect of Nd for Ni3+ stabilization in NdNiO3 synthesized by reactive DC cosputtering, J. Phys. Chem. C, 2017, vol. 121, no. 39, p. 21579. https://doi.org/10.1021/acs.jpcc.7b02251
- Dubois, C., Monty, C., and Philibert, J., Influence of oxygen pressure on oxygen self-diffusion in NiO, Solid State Ionics, 1984, vol. 12, p. 75. https://doi.org/10.1016/0167-2738(84)90132-2
- Dubois, C., Monty, C., and Philibert, J., Oxygen self-diffusion in NiO single crystals, Philos. Mag. A, 1982, vol. 46, no. 3, p. 419. https://doi.org/10.1080/01418618208239569
- Voskresenskaya, E.N., Roguleva, V.G., and Anshits, A.G., Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling, Catal. Rev., 1995, vol. 37, no. 1, p. 101. https://doi.org/10.1080/01614949508007092
- Mierwaldt, D., Roddatis, V., Risch, M., Scholz, J., Geppert, J., Abrishami, M.E., and Jooss, C., Environmental TEM investigation of electrochemical stability of perovskite and Ruddlesden–Popper type manganite oxygen evolution catalysts, Adv. Sustainable Syst., 2017, vol. 1, no. 12, p. 1700109. https://doi.org/10.1002/adsu.201700109
- Bendersky, L.A., Fawcett, I.D., and Greenblatt, M., TEM study of two-dimensional incommensurate modulation in layered La2–2xCa1+2xMn2O7 (0.6 < x < 0.8), Chem. Mater., 2004, vol. 16, no. 25, p. 5304. https://doi.org/10.1021/cm049927e
- Huang, F.-T., Xue, F., Gao, B., Wang, L.H., Luo, X., Cai, W., Lu, X.-Z., Rondinelli, J.M., Chen, L.Q., and Cheong, S.-W., Domain topology and domain switching kinetics in a hybrid improper ferroelectric, Nat. Commun., 2016, vol. 7, p. 11602. https://doi.org/10.1038/ncomms11602
- Usenka, A., Pankov, V., Vibhu, V., Flura, A., Grenier, J.-C., and Bassat, J.-M., Temperature programmed oxygen desorption and sorption processes on Pr2–xLaxNiO4+δ nickelates, ECS Trans., 2019, vol. 91, no. 1, p. 1341. https://doi.org/10.1149/09101.1341ecst
- Sadykov, V.A., Sadovskaya, E.M., Pikalova, E.Yu., Kolchugin, A.A., Filonova, E.A., Pikalov, S.M., Eremeev, N.F., Ishchenko, A.V., Lukashevich, A.I., and Bassat, J.M., Transport features in layered nickelates: Correlation between structure, oxygen diffusion, electrical and electrochemical properties, Ionics, 2018, vol. 24, p. 1181. https://doi.org/10.1007/s11581-017-2279-3
- Tropin, E., Ananyev, M., Porotnikova, N., Khodimchuk, A., Saher, S., Farlenkov, A., Kurumchin, E., Shepel, D., Antipov, E., Istomin, S., and Bouwmeester, H., Oxygen surface exchange and diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ, Phys. Chem. Chem. Phys., 2019, vol. 21, no. 9, p. 4779. https://doi.org/10.1039/C9CP00172G
Дополнительные файлы
