Влияние условий модификации окисленных углеродных нанотрубок на каталитическую активность и селективность в реакции восстановления кислорода до пероксида водорода
- Авторы: Мальцева Н.В.1,2, Мосеенков С.И.2, Лебедева М.В.1,2, Козлов Д.В.1,2
-
Учреждения:
- Новосибирский государственный университет
- Институт катализа им. Г.К. Борескова СО РАН
- Выпуск: Том 60, № 7 (2024)
- Страницы: 512-526
- Раздел: Статьи
- URL: https://archivog.com/0424-8570/article/view/671302
- DOI: https://doi.org/10.31857/S0424857024070051
- EDN: https://elibrary.ru/PPKOYT
- ID: 671302
Цитировать
Аннотация
Катализаторы катодного получения пероксида водорода из кислорода были получены из предварительно окисленных азотной кислотой многостенных углеродных нанотрубок (МУНТ) с последующим восстановлением водородом в диапазоне температур 300–500°С. Исследование физико-химических свойств материалов показало, что выбранный метод синтеза позволяет контролируемо изменять состав кислородных групп на поверхности с сохранением текстурных характеристик и морфологии нанотрубок. Исследование каталитической активности в катодном процессе получения пероксида водорода показало, что наибольшей эффективностью обладает образец, восстановленный при температуре 300°С, содержащий 5.2 ат. % кислорода по данным РФЭС. Образец позволяет получать пероксид водорода со скоростью 0.34 моль/(г·ч) и фарадеевской эффективностью 78%. Дальнейшее увеличение температуры восстановления приводит к снижению скорости накопления Н2О2 при сохраняющейся фарадеевской эффективности.
Об авторах
Н. В. Мальцева
Новосибирский государственный университет; Институт катализа им. Г.К. Борескова СО РАН
Автор, ответственный за переписку.
Email: maltseva.n.v@catalysis.ru
Россия, Новосибирск; Новосибирск
С. И. Мосеенков
Институт катализа им. Г.К. Борескова СО РАН
Email: maltseva.n.v@catalysis.ru
Россия, Новосибирск
М. В. Лебедева
Новосибирский государственный университет; Институт катализа им. Г.К. Борескова СО РАН
Email: maltseva.n.v@catalysis.ru
Россия, Новосибирск; Новосибирск
Д. В. Козлов
Новосибирский государственный университет; Институт катализа им. Г.К. Борескова СО РАН
Email: maltseva.n.v@catalysis.ru
Россия, Новосибирск; Новосибирск
Список литературы
- Hage, R. and Lienke, A., Applications of transition‐metal catalysts to textile and wood‐pulp bleaching, Angewandte Chem. Intern. Ed., 2006, vol. 45, p. 206.
- Raj, C.C. and Quen, H.L., Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique, Chem. Engineering Sci., 2005, vol. 60, p. 5305.
- Kosaka, K., Yamada, H., Shishida, K., Echigo, S., Minear, R.A., Tsuno, H., and Matsui, S., Evaluation of the treatment performance of a multistage ozone/hydrogen peroxide process by decomposition by-products, Water Res., 2001, vol. 35, p. 3587.
- Alvarez–Gallegos, A. and Pletcher, D., The removal of low level organics via hydrogen peroxide formed in a reticulated vitreous carbon cathode cell, Part 1. The electrosynthesis of hydrogen peroxide in aqueous acidic solutions, Electrochim. Acta, 1998, vol. 44, p. 853.
- De Leon, C.P. and Pletcher, D., Removal of formaldehyde from aqueous solutions via oxygen reduction using a reticulated vitreous carbon cathode cell, J. Appl. Electrochem., 1995, vol. 25, p. 307.
- Perry, S.C., Pangotra, D., Vieira, L., Csepei, L.–I., Sieber, V., Wang, L., Ponce de León, C., and Walsh, F.C., Electrochemical synthesis of hydrogen peroxide from water and oxygen, Nature Rev. Chem., 2019, vol. 3, p. 442.
- Tanev, P.T., Chibwe, M., and Pinnavaia, T.J., Titanium–containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature, 1994, vol. 368, p. 321.
- Clerici, M.G. and Ingallina, P., Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite, J. Catalysis, 1993, vol. 140, p. 71.
- Noyori, R., Aoki, M., and Sato, K., Green oxidation with aqueous hydrogen peroxide, Chem. Commun., 2003, vol. p. 1977.
- Lane, B.S. and Burgess, K., Metal-catalyzed epoxidations of alkenes with hydrogen peroxide, Chem. rev., 2003, vol. 103, p. 2457.
- Fierro, J., Campos–martin, J.M., and Blanco–brieva, G., Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process angewandte, Angewandte Chem.–Intern. Ed., 2006, vol. 45, p. 6962.
- Fukuzumi, S., Lee, Y.M., and Nam, W., Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen, Chem.–A Europ. Journal, 2018, vol. 24, p. 5016.
- Davies, R. and Hickling, A., 686. Glow–discharge electrolysis. Part I. The anodic formation of hydrogen peroxide in inert electrolytes, J. Chem. Soc. (Resumed), 1952, vol. p. 3595.
- Viswanathan, V., Hansen, H.A., and Nørskov, J.K., Selective electrochemical generation of hydrogen peroxide from water oxidation, J. Phys. Chem. Letters, 2015, vol. 6, p. 4224.
- Chai, G.-L., Hou, Z., Ikeda, T., and Terakura, K., Two–electron oxygen reduction on carbon materials catalysts: mechanisms and active sites, J. Phys. Chem. C, 2017, vol. 121, p. 14524.
- Park, J., Nabae, Y., Hayakawa, T., and Kakimoto, M.–a., Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, ACS Catalysis, 2014, vol. 4, p. 3749.
- Lei, Y., Liu, H., Jiang, C., Shen, Z., and Wang, W., A trickle bed electrochemical reactor for generation of hydrogen peroxide and degradation of an azo dye in water, J. Advanced Oxidation Technol., 2015, vol. 18, p. 47.
- Lu, Z., Chen, G., Siahrostami, S., Chen, Z., Liu, K., Xie, J., Liao, L., Wu, T., Lin, D., and Liu, Y., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials, Nature Catalysis, 2018, vol. 1, p. 156.
- Fellinger, T.-P., Hasché, F., Strasser, P., and Antonietti, M., Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide, J. Amer. Chem. Soc., 2012, vol. 134, p. 4072.
- Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J., Rizzi, G.A., Martucci, A., Granozzi, G., and Gennaro, A., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide, Carbon, 2015, vol. 95, p. 949.
- Sidik, R.A., Anderson, A.B., Subramanian, N.P., Kumaraguru, S.P., and Popov, B.N., O2 reduction on graphite and nitrogen-doped graphite: experiment and theory, J. Phys. Chem. B, 2006, vol. 110, p. 1787.
- Peng, Y., Bian, Z., Zhang, W., and Wang, H., Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene, Nano Research, 2023, vol. p. 1.
- Lee, J., Lim, J.S., Yim, G., Jang, H., Joo, S.H., and Sa, Y.J., Unveiling the cationic promotion effect of H2O2 electrosynthesis activity of O-doped carbons, ACS appl. mater. & interfaces, 2021, vol. 13, p. 59904.
- Stamatin, S.N., Hussainova, I., Ivanov, R., and Colavita, P.E., Quantifying graphitic edge exposure in graphene-based materials and its role in oxygen reduction reactions, ACS Catalysis, 2016, vol. 6, p. 5215.
- Jiang, Y., Ni, P., Chen, C., Lu, Y., Yang, P., Kong, B., Fisher, A., and Wang, X., Selective electrochemical H2O2 production through two‐electron oxygen electrochemistry, Advanced Energy Mater., 2018, vol. 8, p. 1801909.
- Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes, Carbon, 2008, vol. 46, p. 833.
- Rosca, I.D., Watari, F., Uo, M., and Akasaka, T., Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 2005, vol. 43, p. 3124.
- Li, M., Boggs, M., Beebe, T.P., and Huang, C., Oxidation of single–walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound, Carbon, 2008, vol. 46, p. 466.
- Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R., and Fairbrother, D.H., Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon, 2011, vol. 49, p. 24.
- Panzer, R. and Elving, P.J., Nature of the surface compounds and reactions observed on graphite electrodes, Electrochim. Acta, 1975, vol. 20, p. 635.
- Sun, F., Yang, C., Qu, Z., Zhou, W., Ding, Y., Gao, J., Zhao, G., Xing, D., and Lu, Y., Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant, Appl. Catal. B: Environmental, 2021, vol. 286, p. 119860.
- Han, G.-F., Li, F., Zou, W., Karamad, M., Jeon, J.-P., Kim, S.-W., Kim, S.-J., Bu, Y., Fu, Z., and Lu, Y., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2, Nature commun., 2020, vol. 11, p. 2209.
- Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez–Reinoso, F., Rouquerol, J., and Sing, K.S., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Appl. Chem., 2015, vol. 87, p. 1051.
- Al-Jishi, R. and Dresselhaus, G., Lattice–dynamical model for graphite, Phys. Rev. B, 1982, vol. 26, p. 4514.
- Lee, S., Peng, J.-W., and Liu, C.-H., Probing plasma-induced defect formation and oxidation in carbon nanotubes by Raman dispersion spectroscopy, Carbon, 2009, vol. 47, p. 3488.
- Dresselhaus, M.S., Dresselhaus, G., Saito, R., and Jorio, A., Raman spectroscopy of carbon nanotubes, Phys. reports, 2005, vol. 409, p. 47.
- Kinoshita, K., Electrochemical oxygen technology, John Wiley & Sons, 1992. С. 4.
- Lim, J.S., Kim, J.H., Woo, J., San Baek, D., Ihm, K., Shin, T.J., Sa, Y.J., and Joo, S.H., Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification, Chem., 2021, vol. 7, p. 3114.
- Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chem. Intern. Ed., 2014, vol. 53, p. 102.
- Liu, W., Li, C., Ding, G., Duan, G., Jiang, Y., and Lu, Y., Highly efficient hydrogen peroxide electrosynthesis on oxidized carbon nanotubes by thermally activated–persulfate, J. Materiomics, 2022, vol. 8, p. 136.
- Chen, S., Chen, Z., Siahrostami, S., Higgins, D., Nordlund, D., Sokaras, D., Kim, T.R., Liu, Y., Yan, X., and Nilsson, E., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide, J. Amer. Chem. Soc., 2018, vol. 140, p. 7851.
- Раздьяконова, Г.И., Кохановская, О.А., Лихолобов, В.А. Саморазложение пероксида водорода на поверхности дисперсного углерода. Радиоэлектроника. Наносистемы. Информ. технологии. 2015. Т. 7. С. 180. [Razdyakonova, G.I., Kokhanovskaya, O.A., and Likholobov, V.A., Self–decomposition of hydrogen peroxide on the surface of dispersed carbon, Radioelectronics. Nanosystems. Information Technologies (in Russian), 2015, vol. 7, p. 180.]
- Морозов, А.Р., Родионов, А.И., Каменчук, И.Н. Кинетика разложения пероксида водорода в воде. Успехи в химии и химической технологии. 2014. Т. 28. С. 46. [Morozov, A.R., Rodionov, A.I., and Kamenchuk, I.N., Kinetics of hydrogen peroxide decomposition in water, Uspekhi khimii I khimicheskoy tekhnologii, 2014, vol. 28, p. 46.]
- Ribeiro, R.S., Silva, A.M., Figueiredo, J.L., Faria, J.L., and Gomes, H.T., The influence of structure and surface chemistry of carbon materials on the decomposition of hydrogen peroxide, Carbon, 2013, vol. 62, p. 97.
- Rey, A., Zazo, J., Casas, J., Bahamonde, A., and Rodriguez, J., Influence of the structural and surface characteristics of activated carbon on the catalytic decomposition of hydrogen peroxide, Appl. Catal. A: General, 2011, vol. 402, p. 146.
- Domínguez, C., Quintanilla, A., Ocón, P., Casas, J., and Rodriguez, J., The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition, Carbon, 2013, vol. 60, p. 76.
- Khalil, L.B., Girgis, B.S., and Tawfik, T.A.M., Decomposition of H2O2 on activated carbon obtained from olive stones, J. Chem. Technol. & Biotechnol.: Intern. Res. in Process, Environmental & Clean Technol., 2001, vol. 76, p. 1132.
- Oliveira, L.C., Silva, C.N., Yoshida, M.I., and Lago, R.M., The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition, Carbon, 2004, vol. 42, p. 2279.
Дополнительные файлы
