On-Demand Reconstruction of the Waveform of a Mössbauer Gamma-Ray Photon by Means of Delayed Acoustically Induced Transparency

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method has been proposed to reconstruct at arbitrary time the spectral–temporal characteristics of a
14.4-keV single-photon wave packet that is emitted by a 57Co source and is resonantly absorbed in the
medium of 57Fe nuclei. The method is based on the frequency separation of the field emitted by the source
and resonance nuclear polarization induced by this field by means of delayed acoustically induced transparency
of the absorber, which appears after the activation of oscillations of the absorber at the corresponding
frequency and amplitude. The proposed method has been compared to the known quantum-optical memory
methods and methods of nuclear polarization control in the gamma range. Experimental conditions have
been proposed to implement the method. It has been shown that this method allows the implementation of
the time-resolved Mössbauer spectroscopy of various media.

Sobre autores

I. Khayrulin

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Email: khairulinir@ipfran.ru
Nizhny Novgorod, 603950 Russia

E. Radionychev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: khairulinir@ipfran.ru
Nizhny Novgorod, 603950 Russia

Bibliografia

  1. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
  3. D. Budker, D. Kimball, S. Rochester, and V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).
  5. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
  8. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichen eld, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature 472, 69 (2011).
  9. H. Xionga and Y. Wu, Appl. Phys. Rev. 5, 031305 (2018).
  10. E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and L. J. LeBlanc, Nat. Photonics 12, 774 (2018).
  11. A. Rastogi, E. Saglamyurek, T. Hrushevskyi, S. Hubele, and L. J. LeBlanc, Phys. Rev. A 100, 012314 (2019).
  12. M. F. Yanik, W. Suh, Zh. Wang, and Sh. Fan, Phys. Rev. Lett. 93, 233903 (2004).
  13. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, Opt. Express 14, 2317 (2006).
  14. T. Wang, Y.-Q. Hu, Ch.-G. Du, and G.-L. Long, Opt. Express 27, 7344 (2019).
  15. R. Y. M. Manjappa, Y. K. Srivastava, and R. Singh, Appl. Phys. Lett. 111, 021101 (2017).
  16. Zh. Zhao, H. Zhao, R. T. Ako, J. Zhang, H. Zhao, and Sh. Sriram, Opt. Express 27, 26459 (2019).
  17. O. Kocharovskaya and Ya. I. Khanin, Sov. Phys. JETP. 63, 945 (1986).
  18. K. J. Boller, A. I˙mamoˇglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
  19. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat. Photonics 3, 706 (2009).
  20. M. Afzelius, N. Gisin, and H. de Riedmatten, Phys. Today 68(12), 42 (2015).
  21. T. Chaneli'ere, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, Nature 438, 833 (2005).
  22. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 95, 63601 (2005).
  23. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, Nat. Photonics 4, 218 (2010).
  24. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, Phys. Rev. Lett. 107, 053603 (2011).
  25. K. Reim, J. Nunn, X.-M. Jin, P. Michelberger, T. Champion, D. England, K. Lee, W. Kolthammer, N. Langford, and I. Walmsley, Phys. Rev. Lett. 108, 263602 (2012).
  26. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys. Rev. A 79, 052329 (2009).
  27. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, Nature 469, 508 (2011).
  28. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, and W. Tittel, Phys. Rev. Lett. 108, 083602 (2012).
  29. M. K. Kim and R. Kachru, Opt. Lett. 14, 423 (1989).
  30. D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Beavan, M. P. Hedges, M. J. Sellars, and J. J. Longdell, Phys. Rev. A 84, 022309 (2011).
  31. V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chaneliere, and J.-L. Le Gouet, New J. Phys. 13, 093031 (2011).
  32. S. A. Moiseev and S. Kroll, Phys. Rev. Lett. 87, 173601 (2001).
  33. G. Hetet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
  34. G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 23601 (2008).
  35. G. Hetet, M. Hosseini, B. M. Sparkes, D. Oblak, P. K. Lam, and B. C. Buchler, Opt. Lett. 33, 2323 (2008).
  36. F. Vagizov, V. Antonov, Y. V. Radeonychev, R. N. Shakhmuratov, and O. Kocharovskaya, Nature 508, 80 (2014).
  37. I. R. Khairulin, Y. V. Radeonychev, and O. Kocharovskaya, Sci. Rep. 12, 20270 (2022).
  38. R. Coussement, Y. Rostovtsev, J. Odeurs, G. Neyens, H. Muramatsu, S. Gheysen, R. Callens, K. Vyvey, G. Kozyre, P. Mandel, R. Shakhmuratov, and O. Kocharovskaya, Phys. Rev. Lett. 89, 107601 (2002).
  39. R. N. Shakhmuratov, F. G. Vagizov, J. Odeurs, M. O. Scully, and O. Kocharovskaya, Phys. Rev. A 80, 063805 (2009).
  40. K. P. Heeg, J. Haber, D. Schumacher, L. Bocklage, H.-C. Wille, K. S. Schulze, R. Loetzsch, I. Uschmann, G. G. Paulus, R.Ru¨ er, R. Rohlsberger, and J. Evers, Phys. Rev. Lett. 114, 203601 (2015).
  41. Y. V. Radeonychev, I. R. Khairulin, and F. G. Vagizov, Phys. Rev. Lett. 124, 163602 (2020).
  42. Y. V. Radeonychev, I. R. Khairulin, and O. Kocharovskaya, JETP Lett. 114(12), 729 (2021).
  43. P. Helisto, I. Tittonen, M. Lippmaa, and T. Katila, Phys. Rev. Lett. 66, 2037 (1991).
  44. I. Tittonen, M. Lippmaa, P. Helisto, and T. Katila, Phys. Rev. B 47, 7840 (1993).
  45. R. N. Shakhmuratov, F. G. Vagizov, and O. Kocharovskaya, Phys. Rev. A 84, 043820 (2011).
  46. R. N. Shakhmuratov, F. G. Vagizov, and O. Kocharovskaya, Phys. Rev. A 87, 013807 (2013).
  47. Yu. V. Shvyd'ko, T. Hertrich, U. van Bu¨rck, E. Gerdau, O. Leupold, J. Metge, H. D.Ruter, S. Schwendy, G. V. Smirnov, W. Potzel, and P. Schindelmann, Phys. Rev. Lett. 77, 3232 (1996).
  48. G. V. Smirnov, U. van Burck, J. Arthur, S. L. Popov, A. Q. R. Baron, A. I. Chumakov, S. L.Ruby, W. Potzel, and G. S. Brown, Phys. Rev. Lett. 77, 183 (1996).
  49. G. V. Smirnov and W. Potzel, Hyper ne Interact. 123/124, 633 (1999).
  50. R. N. Shakhmuratov, F. G. Vagizov, V. A. Antonov, Y. V. Radeonychev, M. O. Scully, and O. Kocharovskaya, Phys. Rev. A 92, 023836 (2015).
  51. X. Zhang, W.-T. Liao, A. Kalachev, R. N. Shakhmuratov, M. O. Scully, and O. Kocharovskaya, Phys. Rev. Lett. 123, 250504 (2019).
  52. V. A. Antonov, Y. V. Radeonychev, and O. Kocharovskaya, Phys. Rev. A 92, 023841 (2015).
  53. I. R. Khairulin, V. A. Antonov, Y. V. Radeonychev, and O. Kocharovskaya, Phys. Rev. A 98, 043860 (2018).
  54. I. R. Khairulin, Y. V. Radeonychev, V. A. Antonov, and O. Kocharovskaya, Sci. Rep. 11, 7930 (2021).
  55. G. V. Smirnov, Hyper ne Interact. 123-124, 31 (1999).
  56. M¨ossbauer Spectroscopy, Springer-Verlag Berlin Heidelberg (2013); DOI: https://doi.org/10.1007/978-3-642-32220-4.
  57. Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.124.163602.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023