Вязкость, свободная энергия активации и температура стеклования калиевоборатных расплавов K2O–B2O3

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Вязкость калиевоборатных расплавов измерена в интервале температур 918–1699 K с помощью вибрационного вискозиметра. Содержание оксида калия в расплавах варьировалось от 0.74 до 28.46 мол. %. С использованием конфигурационно-активационной модели рассчитаны параметры энергии активации вязкого течения стеклующихся расплавов (конфигурационная энергия активации (εh) и энергия переключения мостиковых кислородных связей (U)) для двух температурных интервалов 918–1400 K и 1400–1699 K. Методом дифференциальной сканирующей калориметрии определена температура стеклования (Tg) расплавов, построена концентрационная зависимость температуры стеклования от содержания оксида калия в расплаве.

Об авторах

А. А. Хохряков

Институт металлургии Уральского отделения РАН

Email: mari.makarenko.1993@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

М. А. Самойлова

Институт металлургии Уральского отделения РАН

Email: mari.makarenko.1993@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

В. В. Рябов

Институт металлургии Уральского отделения РАН

Email: mari.makarenko.1993@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

Л. Б. Ведмидь

Институт металлургии Уральского отделения РАН

Email: mari.makarenko.1993@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

С. Ю. Мельчаков

Институт металлургии Уральского отделения РАН

Автор, ответственный за переписку.
Email: mari.makarenko.1993@mail.ru
Россия, 620016, Екатеринбург, ул. Амундсена, 101

Список литературы

  1. Nakashima K., Kawagoe T., Ookado T., Mori K. Viscosity of Binary Borate and Ternary Borosilicate Melts. // Slags, Fluxes and Salts. Conference.1997. P. 215.
  2. Воларович М.П., Фридман P.C. Исследование вязкости системы K2В4O7–В2O3 в расплавленном состоянии // Журн. Физической Химии. 1937. Т. 9. № 2. С. 177–181.
  3. Brosh I.E., Pelton A.D., Decterov S.A. A model to calculate the viscosity of silicate melts Part IV: Alkali-free borosilicate melts // International J. Materials Research (formerly Zeitschrift fuer Metallkunde). 2012. V. 103. № 5. P. 494.
  4. Coughanour L.W., Shartsis L., Shermer H.F. Viscosity, Density, and Electrical Resistivity of Molten Alkaline-Earth Borate Glasses with 3 Mol. % of Potassium Oxide // J. American Ceramic Society. 1958. V. 41. № 8. P. 324–329.
  5. Shartsis L., Capps W., Spinner S. Density, Expansivity, and Viscosity of Molten Alkali Silicates // J. American Ceramic Society. 1953. V. 36. № 10. P. 319–326.
  6. Мельчаков С.Ю., Хохряков А.А., Самойлова М.А., Рябов В.В., Ягодин Д.А. Вязкость и свободная энергия активации вязкого течения натриевоборатных расплавов // Физ. и хим. стекла. 2022. Т. 48. № 3. С. 253–261.
  7. Мельчаков С.Ю., Хохряков А. А., Самойлова М. А., Рябов В.В. Исследование зависимостей вязкости и энергии активации вязкого течения литиевоборатных расплавов от содержания оксида лития // Неорганические материалы. 2022. Т. 58. № 5. С. 1–7.
  8. Соловьев А.Н., Каплун А.Б. Вибрационный метод измерения вязкости жидкостей. Новосибирск: Наука, 1970. 140 с.
  9. Штенгельмейер С.В., Прусов В.А., Бочегов В.А. Усовершенствование методики измерения вязкости вибрационным вискозиметром // Заводская лаборатория. 1985. Т. 51. № 9. С. 56–57.
  10. Козин Р.В., Григоренко Г.М. Физико-химические свойства флюсов для электрошлаковых технологий // Современная металлургия. 2016. Т. 125. № 4. С. 10–15.
  11. Осипов А.А., Осипова Л.М., Быков В.Н. Спектроскопия и структура щелочноборатных стекол. Екатеринбург–Миасс: УрО РАН. 2009. 174 с.
  12. Голубков В.В. Структура В2О3 и щелочных боратов в стеклообразном и расплавленном состояниях // Физ. и хим. стекла. 1992. Т. 18. № 2. С. 14–33.
  13. Хохряков А.А., Вершинин А.О., Пайвин А.С., Истомин С.А. Электронные спектры расплавленных смесей хNa2O–(100 – x)B2O3 и хNa2O–(100 – x)B2O3–Re2O3 (Re = Sm, Eu) // Расплавы. 2017. № 6. С. 538–549.
  14. Handa K., Kita Y. Structure of M2O–B2O3 (M: Na and K) glasses and melts by neutron diffraction // J. Physics and Chemistry of Solids 1999. V. 60. P. 1465–1471.
  15. Umesaki N., Kira Y. Structure of K2O–B2O3 Glasses and Melts // Electrochemistry. 1999. № 6. P. 541–546.
  16. Akagi R., Umesaki N. Raman spectra of K2O–B2O3 glasses and melts. // J. Non-Crystalline Solids. 2001. V. 293. № 1. P. 471–476.
  17. Сандитов Д.С. Сдвиговая вязкость стеклообразующих расплавов в области перехода “жидкость–стекло” // Доклады АН 2005. Т. 403. С. 498–501.
  18. Boora M. Malik S., Kumar V., Bala M., Arora S., Rohilla S., Kumar A., Dalal J. Investigation of structural and impedance spectroscopic properties of borate glasses with high Li+ concentration. // Solid State Ionics. 2021. V. 368. P. 115704.
  19. Chryssikos G.D., Kamitsos E.I. Effect of Li2SO4 on the structure of Li2O–B2O3 glasses // J. Non-Crystalline Solids. 1996. V. 202. № 3. P. 222–232.
  20. Green R.L. X-ray diffraction and physical properties of potassium borate glasses // J. American Ceramic Society. 1942. V. 25. № 3. P. 83.
  21. Poch W. Vollständige Entwässerung einer B2O3 – Schmeize und einige Eigenschaftswerte des daraus erhaltenen Glases. // Glastech. Ber. 964. V. 37. P. 533–535.

Дополнительные файлы


© А.А. Хохряков, М.А. Самойлова, В.В. Рябов, Л.Б. Ведмидь, С.Ю. Мельчаков, 2023