Porphyrins as polyfunctional ligands for binding to DNA. Prospects for application
- 作者: Lebedeva N.S.1, Yurina E.S.1
-
隶属关系:
- Institute of Chemistry of Solutions named after G.A. Krestov, Russian Academy of Sciences
- 期: 卷 50, 编号 6 (2024)
- 页面: 707-719
- 栏目: Articles
- URL: https://archivog.com/0132-3423/article/view/670748
- DOI: https://doi.org/10.31857/S0132342324060015
- EDN: https://elibrary.ru/NGMHIQ
- ID: 670748
如何引用文章
详细
The study of the interaction of nucleic acids with ligands is relevant not only from a scientific point of view, but also has high potential practical significance. Complexes of nucleic acids with ligands affect the biochemical functions of the most important carrier of genetic information, which opens up opportunities for treating genetic diseases and controlling the aging of both cells and the organism as a whole. Among the huge variety of potential ligands, porphyrins and related compounds occupy a special place, due to their ability to generate reactive oxygen species under irradiation with light. The photocatalytic properties of porphyrins can be used in the creation of molecular tools for genetic engineering and the treatment of viral and bacterial infections at the genetic level. Modification of porphyrin compounds allows targeting of the ligand to a specific biological target. The review summarizes the literature data describing the processes of complexation of nucleic acids with aromatic ligands, mainly with porphyrins. The influence of the structure of macroheterocyclic compounds on the features of interaction with nucleic acids is analyzed. Promising directions for further research are outlined.
全文:

作者简介
N. Lebedeva
Institute of Chemistry of Solutions named after G.A. Krestov, Russian Academy of Sciences
Email: yurina_elena77@mail.ru
俄罗斯联邦, ul. Academicheskaya 1, Ivanovo, 153045
E. Yurina
Institute of Chemistry of Solutions named after G.A. Krestov, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: yurina_elena77@mail.ru
俄罗斯联邦, ul. Academicheskaya 1, Ivanovo, 153045
参考
- Hannon M.J. // Chem. Soc. Rev. 2007. V. 36. P. 280–295. https://doi.org/10.1039/B606046N
- Lerman L.S. // J. Mol. Biol. 1961. V. 3. P. 18–30. https://doi.org/10.1016/S0022-2836(61)80004-1
- Olweny C.L.M., Toya T., Katongole-Mbidde E., Lwanga S.K., Owor R., Kyalwazi S., Vogel C.L. // Int. J. Cancer. 1974. V. 14. P. 649–656. https://doi.org/10.1002/ijc.2910140512
- Malogolowkin M., Cotton C.A., Green D.M., Breslow N.E., Perlman E., Miser J., Ritchey M.L., Thomas P.R.M., Grundy P.E., D’Angio G.J., Beckwith J.B., Shamberger R.C., Haase G.M., Donaldson M., Weetman R., Coppes M.J., Shearer P., Coccia P., Kletzel M., Macklis R., Tomlinson G., Huff V., Newbury R., Weeks D. // Pediatr. Blood Cancer. 2008. V. 50. P. 236–241. https://doi.org/10.1002/pbc.21267
- Giermasz A., Makowski M., Nowis D., Jalili A., Malgorzata M.A.J., Dabrowska A., Czajka A., Jakobisiak M., Golab J. // Oncol. Rep. 2002. V. 9. P. 199–203. https://doi.org/10.3892/or.9.1.199
- Brunnberg U., Mohr M., Noppeney R., Dürk H.A., Sauerland M.C., Müller-Tidow C., Krug U., Koschmieder S., Kessler T., Mesters R.M., Schulz C., Kosch M., Büchner T., Ehninger G., Dührsen U., Serve H., Berdel W.E. // Ann. Oncol. 2012. V. 23. P. 990–996. https://doi.org/10.1093/annonc/mdr346
- Kantarjian H.M., Talpaz M., Kontoyiannis D., Gutterman J., Keating M.J., Estey E.H., O’Brien S., Rios M.B., Beran M., Deisseroth A. // J. Clin. Oncol. 1992. V. 10. P. 398–405. https://doi.org/10.1200/JCO.1992.10.3.398
- Minuk L.A., Monkman K., Chin-Yee I.H., LazoLangner A., Bhagirath V., Chin-Yee B.H., Mangel J.E. // Leukemia & Lymphoma. 2012. V. 53. P. 57–63. https://doi.org/10.3109/10428194.2011.602771
- Martinez R., Chacon-Garcia L. // Curr. Med. Chem. 2005. V. 12. P. 127–151. https://doi.org/10.2174/0929867053363414
- Bhaduri S., Ranjan N., Arya D.P. // Beilstein J. Org. Chem. 2018. V. 14. P. 1051–1086. https://doi.org/10.3762/bjoc.14.93
- Mišković K., Bujak M., Baus Lončar M., GlavašObrovac L. // Arh. Hig. Rada Toksikol. 2013. V. 64. P. 593–601. https://doi.org/10.2478/10004-1254-64-2013-2371
- Mukherjee A., Sasikala W.D. // Adv. Protein Chem. Struct. Biol. 2013. V. 92. P. 1–62. https://doi.org/10.1016/B978-0-12-411636-8.00001-8
- Baruah H., Bierbach U. // Nucleic Acids Res. 2003. V. 31. P. 4138–4146. https://doi.org/10.1093/nar/gkg465
- Bazzicalupi C., Bencini A., Bianchi A., Biver T., Boggioni A., Bonacchi S., Danesi A., Giorgi C., Gratteri P., Ingraín A.M. // Chem. Eur. J. 2008. V. 14. P. 184–196. https://doi.org/10.1002/chem.200601855
- Berman H.M., Young P.R. // Ann. Rev. Biophys. Bioeng. 1981. V. 10. P. 87–114.
- Hu G.G., Shui X., Leng F., Priebe W., Chaires J.B., Williams L.D. // Biochemistry. 1997. V. 36. P. 5940– 5946. https://doi.org/10.1021/bi9705218
- Dickerson R.E., Drew H.R. // J. Mol. Biol. 1981. V. 149. P. 761–786. https://doi.org/10.1016/0022-2836(81)90357-0
- Pfoh R., Cuesta-Seijo J.A., Sheldrick G.M. // Acta Crystallog. Sect. F: Struct. Biol. Cryst. Commun. 2009. V. 65. P. 660–664. https://doi.org/10.1107/S1744309109019654
- Wang A.H.-J., Ughetto G., Quigley G.J., Hakoshima T., Van der Marel G.A., Van Boom J.H., Rich A. // Science. 1984. V. 225. P. 1115–1121. https://doi.org/10.1126/science.6474168
- Gao Q., Williams L.D., Egli M., Rabinovich D., Chen S.-L., Quigley G.J., Rich A. // Proc. Natl. Acad. Sci. 1991. V. 88. P. 2422–2426. https://doi.org/10.1073/pnas.88.6.2422
- Petersen M., Jacobsen J.P. // Bioconjug. Chem. 1998. V. 9. P. 331–340. https://doi.org/10.1021/bc970133i
- Günther K., Mertig M., Seidel R. // Nucleic Acids Res. 2010. V. 38. P. 6526–6532. https://doi.org/10.1093/nar/gkq434
- Lee S., Lee Y.-A., Lee H.M., Lee J.Y., Kim D.H., Kim S.K. // Biophys. J. 2002. V. 83. . 371–381. https://doi.org/10.1016/S0006-3495(02)75176-X
- Dixon I.M., Lopez F., Estève J.P., Tejera A.M., Blasco M.A., Pratviel G., Meunier B. // Chem. Bio. Chem. 2005. V. 6. P. 123–132. https://doi.org/10.1002/cbic.200400113
- Pasternack R.F., Garrity P., Ehrlich B., Davis C.B., Gibbs E.J., Orloff G., Giartosio A., Turano C. // Nucleic Acids Res. 1986. T. 14. C. 5919–5931. https://doi.org/10.1093/nar/14.14.5919
- Biver T. // Appl. Spectrosc. Rev. 2012. V. 47. P. 272–325. https://doi.org/10.1080/05704928.2011.641044
- Von Holde K.E., Johnson W.C., Pui S.H. // Principles of Physical Biochemistry, 2nd ed. Prentice Hall: Upper Saddle River, NJ, 2006.
- Kelly J.M., Murphy M.J., McConnell D.J., OhUigin C. // Nucleic Acids Res. 1985. V. 13. P. 167–184. https://doi.org/10.1093/nar/13.1.167
- Chirvony V.S., Galievsky V.A., Kruk N.N., Dzhagarov B.M., Turpin P.-Y. // J. Photochem. Photobiol. B Biol. 1997. V. 40. P. 154–162. https://doi.org/10.1016/S1011-1344(97)00043-2
- Shen Y., Myslinski P., Treszczanowicz T., Liu Y., Koningstein J. // J. Phys. Chem. C. 1992. V. 96. P. 7782– 7787.
- Keane P.M., Kelly J.M. // Coord. Chem. Rev. 2018. V. 364. P. 137–154. https://doi.org/10.1016/j.ccr.2018.02.018
- Chirvony V.S., Galievsky V.A., Terekhov S.N., Dzhagarov B.M., Ermolenkov V.V., Turpin P.Y. // Biospectroscopy. 1999. V. 5. P. 302–312. https://doi.org/10.1002/(SICI)1520-6343(1999)5: 5<302::AID-BSPY5>3.0.CO;2-N
- Bejune S.A., Shelton A.H., McMillin D.R. // Inorg. Chem. 2003. V. 42. P. 8465–8475. https://doi.org/10.1021/ic035092i
- Wall R.K., Shelton A.H., Bonaccorsi L.C., Bejune S.A., Dube D., McMillin D.R. // J. Am. Chem. Soc. 2001. V. 123. P. 11480–11481. https://doi.org/10.1021/ja010005b
- Collins D.M., Hoard J.L. // J. Am. Chem. Soc. 1970. V. 92. P. 3761–3771.
- Ghimire S., Fanwick P.E., McMillin D.R. // Inorg. Chem. 2014. V. 53. С. 11108–11118. https://doi.org/10.1021/ic501683t
- Mukundan N.E., Petho G., Dixon D.W., Kim M.S., Marzilli L.G. // Inorg. Chem. 1994. V. 33. P. 4676–4687.
- Aleeshah R., Samakoosh S.Z., Eslami A. // J. Iran. Chem. Soc. 2019. V. 16. P. 1327–1343. https://doi.org/10.1007/s13738-019-01609-2
- Gray T.A., Marzilli L.G., Yue K.T. // J. Inorg. Biochem. 1991. V. 41. P. 205–219. https://doi.org/10.1016/0162-0134(91)80013-8
- Pasternack R.F., Gibbs E.J., Villafranca J.J. // Biochemistry. 1983. V. 22. P. 5409–5417.
- Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A. // Dyes and Pigments. 2023. V. 220. P. 111723. https://doi.org/10.1016/j.dyepig.2023.111723
- Mathew D., Sujatha S. // J. Inorg. Biochem. 2021. V. 219. P. 111434. https://doi.org/10.1016/j.jinorgbio.2021.111434
- Hamilton L.D., Barclay R.K., Wilkins M.H.F., Brown G.L., Wilson H.R., Marvin D.A., EphrussiTaylor H., Simmons N.S. // J. Cell Biol. 1959. V. 5. P. 397–404. https://doi.org/10.1083/jcb.5.3.397
- Lebedeva N.S., Yurina E., Lebedev M., Kiselev A., Syrbu S., Gubareva Y.A. // Macroheterocycles. 2021. V. 14. P. 342–347. https://doi.org/10.6060/mhc214031g
- Cenklová V. // J. Photochem. Photobiol. B Biol. 2017. V. 173. P. 522–537. https://doi.org/10.1016/j.jphotobiol.2017.06.029
- Wang L.-L., Wang H.-H., Wang H., Liu H.-Y. // J. Phys. Chem. B. 2021. V. 125. P. 5683–5693. https://doi.org/10.1021/acs.jpcb.0c09335
- Tjahjono D. H., Akutsu T., Yoshioka N., Inoue H. // Biochim. Biophys. Acta Gen. Subj. 1999. V. 1472. P. 333–343. https://doi.org/10.1016/S0304-4165(99)00139-7
- Yamamoto T., Tjahjono D.H., Yoshioka N., Inoue H. // Bull. Chem. Soc. Jpn. 2003. V. 76. P. 1947– 1955. https://doi.org/10.1246/bcsj.76.1947
- Tjahjono D.H., Mima S., Akutsu T., Yoshioka N., Inoue H. // J. Inorg. Biochem. 2001. V. 85. P. 219–228. https://doi.org/10.1016/S0162-0134(01)00186-6
- Wang P., Ren L., He H., Liang F., Zhou X., Tan Z. // ChemBioChem. 2006. V. 7. P. 1155–1159. https://doi.org/10.1002/cbic.200600036
- Hirakawa K., Harada M., Okazaki S., Nosaka Y. // ChemComm. 2012. V. 48. P. 4770–4772. https://doi.org/10.1039/C2CC30880K
- Caminos D.A., Durantini E.N. // J. Porphyr. Phthalocyan. 2005. V. 9. P. 334–342. https://doi.org/10.1142/S1088424605000423
- Reddi E., Ceccon M., Valduga G., Jori G., Bommer J. C., Elisei F., Latterini L., Mazzucato U. // Photochem. Photobiol. 2002. V. 75. P. 462–470. https://doi.org/10.1562/0031-8655(2002)0750462PPA AAO2.0.CO2
- Cárdenas-Jirón G.I., Cortez L. // J. Mol. Model. 2013. V. 19. P. 2913–2924. https://doi.org/10.1007/s00894-013-1822-z
- Lebedeva N.S., Yurina E.S., Guseinov S.S., Gubarev Y.A., Syrbu S.A. // Dyes and Pigments. 2019. V. 162. P. 266–271. https://doi.org/10.1016/j.dyepig.2018.10.034
- Oliveira V.A., Terenzi H., Menezes L.B., Chaves O.A., Iglesias B.A. // J. Photochem. Photobiol. B Biol. 2020. V. 211. P. 111991. https://doi.org/10.1016/j.jphotobiol.2020.111991
- Vizzotto B.S., Dias R.S., Iglesias B.A., Krause L.F., Viana A.R., Schuch A.P. // J. Photochem. Photobiol. B Biol. 2020. V. 209. P. 111922. https://doi.org/10.1016/j.jphotobiol.2020.111922
- Lipscomb L.A., Zhou F.X., Presnell S.R., Woo R.J., Peek M.E., Plaskon R.R., Williams L.D. // Biochemistry. 1996. V. 35. P. 2818–2823. https://doi.org/10.1021/bi952443z
- Komor A.C., Barton J.K. // ChemComm. 2013. V. 49. P. 3617–3630. https://doi.org/10.1039/C3CC00177F
- Galindo-Murillo R., Cheatham T.E. // Nucleic Acids Res. 2021. V. 49. P. 3735–3747. https://doi.org/10.1093/nar/gkab143
- García-Ramos J.C., Galindo-Murillo R., CortésGuzmán F., Ruiz-Azuara L. // J. Mex. Chem. Soc. 2013. V. 57. P. 245–259.
- Song H., Kaiser J.T., Barton J.K. // Nat. Chem. 2012. V. 4. P. 615–620. https://doi.org/10.1038/nchem.1375
- Lebedeva N.Sh., Yurina E.S., Guseinov S.S., Koifman O.I. // Macroheterocycles. 2023. V. 16. P. 211–217. https://doi.org/10.6060/mhc235287l
- Lebedeva N.S., Yurina E.S., Guseinov S.S., Syrbu S.A. // J. Incl. Phenom. Macrocycl. Chem. 2023. V. 103. P. 429–440. https://doi.org/10.1007/s10847-023-01207-z
- Das A., Mohammed T.P., Kumar R., Bhunia S., Sankaralingam M. // Dalton Trans. 2022. V. 51. P. 12453–12466. https://doi.org/10.1039/D2DT00555G
- Cheng F., Wang H.-H., Kandhadi J., Zhao F., Zhang L., Ali A., Wang H., Liu H.-Y. // J. Phys. Chem. B. 2018. V. 122. P. 7797–7810. https://doi.org/10.1021/acs.jpcb.8b02292
- Li H., Fedorova O.S., Grachev A.N., Trumble W.R., Bohach G.A., Czuchajowski L. // Biochim. Biophys. Acta Gen. Struc. Express. 1997. V. 1354. P. 252–260. https://doi.org/10.1016/S0167-4781(97)00118-8
- Syrbu S.A., Kiselev A.N., Lebedev M.A. Yurina E.S., Lebedeva N.Sh. // Russ. J. Gen. Chem. 2023. V. 93. P. S562–S571. https://doi.org/10.1134/S1070363223150197
- Lebedeva N.Sh., Yurina E.S., Kiselev A.N., Lebedev M.A., Syrbu S.A. // Mendeleev Commun. 2024. V. 34. P. 525–527. https://doi.org/10.1016/j.mencom.2024.06.018
补充文件
