Ultrafast Photochemical Reaction of Exiguobacterium sibiricum Rhodopsin (ESR) at Alkaline pH
- Autores: Smitienko O.A.1, Feldman T.B.1,2, Petrovskaya L.E.3, Kryukova E.A.3, Shelaev I.V.4, Gostev F.E.4, Cherepanov D.A.4, Kolchugina I.B.2, Dolgikh D.A.1,2,3, Nadtochenko V.A.4, Kirpichnikov M.P.2,3, Ostrovsky M.A.1,2
-
Afiliações:
- Emanuel Institute of Biochemical Physics
- Lomonosov Moscow State University
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- Semenov Federal Research Center of Chemical Physics
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 508-516
- Seção: Articles
- URL: https://archivog.com/0132-3423/article/view/670852
- DOI: https://doi.org/10.31857/S0132342324040107
- EDN: https://elibrary.ru/MWPPND
- ID: 670852
Citar
Resumo
Rhodopsin from the eubacterium Exiguobacterium sibiricum (ESR) performs the function of light-dependent proton transport. The operation of ESR is based on the ultrafast photochemical reaction of isomerization of the retinal chromophore, which triggers dark processes closed in the photocycle. Many parameters of the photocycle are determined by the degree of protonation of Asp85 – the primary counterion of the chromophore group and the proton acceptor. ESR in detergent micelles pumps protons most efficiently at pH > 9, when Asp85 is almost completely deprotonated. In this work, the photochemical reaction of ESR at pH 9.5 was studied by femtosecond laser absorption spectroscopy. It was shown that photoisomerization of the chromophore group occurs in 0.51 ps, and the contribution of the reactive excited state is about 80%. A comparison with the data we obtained at pH 7.4 showed that at pH 9.5 the reaction proceeds much faster and more efficiently. The data obtained confirm the important role of the chromophore group counterion in the photoactivated processes of rhodopsins.
Palavras-chave
Texto integral

Sobre autores
O. Smitienko
Emanuel Institute of Biochemical Physics
Autor responsável pela correspondência
Email: djolia@gmail.com
Rússia, ul. Kosygina 4, Moscow, 119334
T. Feldman
Emanuel Institute of Biochemical Physics; Lomonosov Moscow State University
Email: djolia@gmail.com
Department of Biology
Rússia, ul. Kosygina 4, Moscow, 119334; Leninskie gory 1, Moscow, 119991L. Petrovskaya
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: djolia@gmail.com
Rússia, ul. Mikluho-Maklaya 16/10, Moscow, 117997
E. Kryukova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: djolia@gmail.com
Rússia, ul. Mikluho-Maklaya 16/10, Moscow, 117997
I. Shelaev
Semenov Federal Research Center of Chemical Physics
Email: djolia@gmail.com
Rússia, ul. Kosygina 4, Moscow, 119991
F. Gostev
Semenov Federal Research Center of Chemical Physics
Email: djolia@gmail.com
Rússia, ul. Kosygina 4, Moscow, 119991
D. Cherepanov
Semenov Federal Research Center of Chemical Physics
Email: djolia@gmail.com
Rússia, ul. Kosygina 4, Moscow, 119991
I. Kolchugina
Lomonosov Moscow State University
Email: djolia@gmail.com
Department of Biology
Rússia, Leninskie gory 1, Moscow, 119991D. Dolgikh
Emanuel Institute of Biochemical Physics; Lomonosov Moscow State University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: djolia@gmail.com
Department of Biology
Rússia, ul. Kosygina 4, Moscow, 119334; Leninskie gory 1, Moscow, 119991; ul. Mikluho-Maklaya 16/10, Moscow, 117997V. Nadtochenko
Semenov Federal Research Center of Chemical Physics
Email: djolia@gmail.com
Rússia, ul. Kosygina 4, Moscow, 119991
M. Kirpichnikov
Lomonosov Moscow State University; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: djolia@gmail.com
Department of Biology
Rússia, Leninskie gory 1, Moscow, 119991; ul. Mikluho-Maklaya 16/10, Moscow, 117997M. Ostrovsky
Emanuel Institute of Biochemical Physics; Lomonosov Moscow State University
Email: djolia@gmail.com
Department of Biology
Rússia, ul. Kosygina 4, Moscow, 119334; Leninskie gory 1, Moscow, 119991Bibliografia
- Ernst O.P., Lodowski D.T., Elstner M., Hegemann P., Brown L.S., Kandori H. // Chem. Rev. 2014. V. 114. P. 126−163. https://doi.org/10.1021/cr4003769
- Balashov S.P., Petrovskaya L.E., Lukashev E.P., Imasheva E.S., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. // Biochemistry. 2012. V. 51. P. 5748−5762. https://doi.org/10.1021/bi300409m
- Dioumaev A.K., Petrovskaya L.E., Wang J.M., Balashov S.P., Dolgikh D.A., Kirpichnikov M.P., Lanyi J.K. // J. Phys. Chem. B. 2013. V. 117. P. 7235− 7253. https://doi.org/10.1021/jp402430w
- Petrovskaya L.E., Lukashev E.P., Chupin V.V., Sychev S.V., Lyukmanova E.N., Kryukova E.A., Ziganshin R.H., Spirina E.V., Rivkina E.M., Khatypov R.A., Erokhina L.G., Gilichinsky D.A., Shuvalov V.A., Kirpichnikov M.P. // FEBS Lett. 2010. V. 584. P. 4193−4196. https://doi.org/10.1016/j.febslet.2010.09.005
- Balashov S.P., Petrovskaya L.E., Imasheva E.S., Lukashev E.P., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. // J. Biol. Chem. 2013. V. 288. P. 21254−21265. https://doi.org/10.1074/jbc.M113.465138
- Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Petrovskaya L.E. // Biochim. Biophys. Acta. Bioenerg. 2016. V. 1857. P. 1741−1750. https://doi.org/10.1016/j.bbabio.2016.08.004
- Smitienko O.A., Feldman T.B., Petrovskaya L.E., Nekrasova O.V., Yakovleva M.A., Shelaev I.V., Gostev F.E., Cherepanov D.A., Kolchugina I.B., Dolgikh D.A., Nadtochenko V.A., Kirpichnikov M.P., Ostrovsky M.A. // J. Phys. Chem. B. 2021. V. 125. P. 995–1008. https://doi.org/10.1021/acs.jpcb.0c07763
- Arlt T., Schmidt S., Zinth W., Haupts U., Oesterhelt D. // Chem. Phys. Lett. 1995. V. 241. P. 559−565. https://doi.org/10.1016/0009-2614(95)00664-P
- Wand A., Loevsky B., Friedman N., Sheves M., Ruhman S. // J. Phys. Chem. B. 2013. V. 117. P. 4670− 4679. https://doi.org/10.1021/jp309189y
- Inoue K., Tahara S., Kato Y., Takeuchi S., Tahara T., Kandori H. // J. Phys. Chem. B. 2018. V. 122. P. 6453– 6461. https://doi.org/10.1021/acs.jpcb.8b01279
- Tahara S., Takeuchi S., Abe-Yoshizumi R., Inoue K., Ohtani H., Kandori H., Tahara T. // J. Phys. Chem. B. 2018. V. 122. P. 4784−4792. https://doi.org/10.1021/acs.jpcb.8b01934
- Chang C.-F., Kuramochi H., Singh M., Abe-Yoshizumi R., Tsukuda T., Kandori H., Tahara T. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 25728−25734. https://doi.org/10.1039/C9CP04991F
- Chang C.-F., Kuramochi H., Singh M., Abe-Yoshizumi R., Tsukuda T., Kandori H., Tahara T. // Chem. Int. Ed. 2022. V. 61. P. e202111930. https://doi.org/10.1002/anie.202111930
- McCamant D.W., Kukura P., Mathies R.A. // J. Phys. Chem. B. 2005. V. 109. P. 10449−10457. https://doi.org/10.1021/jp050095x
- Yu J.K., Liang R., Liu F., Martinez T.J. // J. Am. Chem. Soc. 2019. V. 141. P. 18193−18203. https://doi.org/10.1021/jacs.9b08941
- Scholz F., Bamberg E., Bamann C., Wachtveitl J. // Biophys. J. 2012. V. 102. P. 2649–2657. https://doi.org/ 10.1016/j.bpj.2012.04.034
- Slouf V., Balashov S.P., Lanyi J.K., Pullerits T., Polivka T. // Chem. Phys. Lett. 2011. V. 516. P. 96−101. https://doi.org/10.1016/j.cplett.2011.09.062
- Iyer E.S.S., Misra R., Maity A., Liubashevski O., Sudo Y., Sheves M., Ruhman S. // J. Am. Chem. Soc. 2016. V. 138. P. 12401−12407. https://doi.org/10.1021/jacs.6b05002
- Gozem S., Luk H.L., Schapiro I., Olivucci M. // Chem. Rev. 2017. V. 117. P. 13502−13565. https://doi.org/10.1021/acs.chemrev.7b00177
- Gozem S., Johnson P.J.M., Halpin A., Luk H.L., Morizumi T., Prokhorenko V.I., Ernst O. P., Olivucci M., Miller R.J.D. // J. Phys. Chem. Lett. 2020. V. 11. 3889−3896. https://doi.org/10.1021/acs.jpclett.0c01063
- Kiefer H.V., Gruber E., Langeland J., Kusochek P.A., Bochenkova A.V., Andersen L.H. // Nat. Commun. 2019. V. 10. P. 1210. https://doi.org/10.1038/s41467-019-09225-7
- Zgrablic G., Novello A.M., Parmigiani F. // J. Am. Chem. Soc. 2012. V. 134. P. 955−961. https://doi.org/10.1021/ja205763x
- Govindjee R., Balashov S.P., Ebrey T.G. // Biophys. J. 1990. V. 58. P. 597−608. https://doi.org/10.1016/S0006-3495(90)82403-6
- Koyama Y., Kubo K., Komori M., Yasuda H., Mukai Y. // Photochem. Photobiol. 1991. V. 54. P. 433−443. https://doi.org/10.1111/j.1751-1097.1991.tb02038.x
- Doig S.J., Reid P.J., Mathies R.A. // J. Phys. Chem. 1991. V. 95. P. 6372−6379. https://doi.org/10.1021/j100169a054
- Shim S., Dasgupta J., Mathies R.A. // J. Am. Chem. Soc. 2009. V. 131. P. 7592−7597. https://doi.org/10.1021/ja809137x
- Huber R., Kohler T., Lenz M.O., Bamberg E., Kalmbach R., Engelhard M., Wachtveitl J. // Biochemistry. 2005. V. 44. P. 1800−1806. https://doi.org/10.1021/bi048318h
- Amsden J.J., Kralj J.M., Chieffo L.R., Wang X., Erramilli S., Spudich E.N., Spudich J.L., Ziegler L.D., Rothschild K.J. // J. Phys. Chem. B. 2007. V. 111. P. 11824−11831. https://doi.org/10.1021/jp073490r
- Hasson K.C., Gai F., Anfinrud P.A. // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 15124−15129. https://doi.org/10.1073/pnas.93.26.15124
- Kusochek P.A., Scherbinin A.V., Bochenkova A.V. // J. Phys. Chem. Lett. 2021. V. 12. P. 8664−8671. https://doi.org/10.1021/acs.jpclett.1c02312
- Imasheva E.S., Balashov S.P., Wang J.M., Dioumaev A.K., Lanyi J.K. // Biochemistry. 2004. V. 43. P. 1648–1655. https://doi.org/10.1021/bi0355894
- Menon S.T., Han M., Sakmar T.P. // Physiol. Rev. 2001. V. 81. P. 1659–1688. https://doi.org/10.1152/physrev.2001.81.4.1659
- Kandori H. // In: Supramolecular Photochemistry: Controlling Photochemical Processes. Chapter 14 / Eds. Ramamurthy V., Inoue Y. John Wiley & Sons, Inc., 2011. P. 571–595. https://doi.org/10.1002/9781118095300.ch14
- Shelaev I.V., Gostev F.E., Mamedov M.D., Sarkisov O.M., Nadtochenko V.A., Shuvalov V.A., Semenov A.Y. // Biochim. Biophys. Acta. 2010. V. 1797. P. 1410−1420. https://doi.org/10.1016/j.bbabio.2010.02.026
Arquivos suplementares
