Bacterial Cold Shock Proteins as a Factor of Adaptation to Stresses
- Авторлар: Grigorov A.S.1, Azhikina T.L.1
-
Мекемелер:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 49, № 1 (2023)
- Беттер: 23-31
- Бөлім: Articles
- URL: https://archivog.com/0132-3423/article/view/670685
- DOI: https://doi.org/10.31857/S0132342323010104
- EDN: https://elibrary.ru/GFEUFH
- ID: 670685
Дәйексөз келтіру
Аннотация
Bacteria have evolved a number of mechanisms to cope with stresses and adapt to changing environmental conditions. A family of bacterial proteins containing a functional cold shock domain are highly conserved nucleic acid-binding proteins that modulate transcription and post-transcriptional events in bacteria. For many bacteria, these proteins have been shown to regulate the expression of various genes involved in virulence and resistance of bacteria to stresses. The review discusses the new data on the mechanisms of action and the roles of cold shock proteins in the regulation of expression in intracellular bacterial pathogens.
Негізгі сөздер
Авторлар туралы
A. Grigorov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: artgrigorov@gmail.com
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
T. Azhikina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences
Email: artgrigorov@gmail.com
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10
Әдебиет тізімі
- Link T.M., Valentin-Hansen P., Brennana R.G. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 19292–19297. https://doi.org/10.1073/PNAS.0908744106
- Vogel J., Luisi B.F. // Nat. Rev. Microbiol. 2011. V. 9. P. 578–589. https://doi.org/10.1038/NRMICRO2615
- Smirnov A., Förstner K.U., Holmqvist E., Otto A., Günster R., Becher D., Reinhardt R., Vogel J. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 11591–11596. https://doi.org/10.1073/pnas.1609981113
- Smirnov A., Wang C., Drewry L.L., Vogel J. // EMBO J. 2017. V. 36. P. 1029–1045. https://doi.org/10.15252/EMBJ.201696127
- Ermolenko D.N., Makhatadze G.I. // Cell. Mol. Life Sci. 2002. V. 59. P. 1902–1913. https://doi.org/10.1007/PL00012513
- Schindelin H., Jiang W., Inouye M., Heinemann U. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P. 5119–5123. https://doi.org/10.1073/PNAS.91.11.5119
- Rennella E., Sára T., Juen M., Wunderlich C., Imbert L., Solyom Z., Favier A., Ayala I., Weinhäupl K., Schanda P., Konrat R., Kreutz C., Brutscher B. // Nucleic Acids Res. 2017. V. 45. P. 4255–4268. https://doi.org/10.1093/NAR/GKX044
- Horn G., Hofweber R., Kremer W., Kalbitzer H.R. // Cell. Mol. Life Sci. 2007. V. 64. P. 1457–1470. https://doi.org/10.1007/S00018-007-6388-4
- Goldstein J., Pollitt N.S., Inouye M. // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 283–287. https://doi.org/10.1073/PNAS.87.1.283
- Yamanaka K., Inouye M. // J. Bacteriology. 1997. V. 179. P. 5126–5130. https://doi.org/10.1128/JB.179.16.5126-5130.1997
- Yu T., Keto-Timonen R., Jiang X., Virtanen J.P., Korkeala H. // Int. J. Mol. Sci. 2019. V. 20. P. 4059. https://doi.org/10.3390/IJMS20164059
- Jiang W., Hou Y., Inouye M. // J. Biol. Chem. 1997. V. 272. P. 196–202. https://doi.org/10.1074/JBC.272.1.196
- Giangrossi M., Gualerzi C.O., Pon C.L. // Biochimie. 2001. V. 83. P. 251–259. https://doi.org/10.1016/S0300-9084(01)01233-0
- Jones P.G., Krah R., Tafuri S.R., Wolffe A.P. // J. Bacteriol. 1992. V. 174. P. 5798–5802. https://doi.org/10.1128/JB.174.18.5798-5802.1992
- Bae W., Xia B., Inouye M., Severinov K. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 7784–7789. https://doi.org/10.1073/pnas.97.14.7784
- Bae W., Jones P.G., Inouye M. // J. Bacteriology. 1997. V. 179. P. 7081–7088. https://doi.org/10.1128/JB.179.22.7081-7088.1997
- Wu L., Ma L., Li X., Huang Z., Gao X. // Mol. Plant Pathol. 2019. V. 20. P. 382–391. https://doi.org/10.1111/MPP.12763
- la Teana A., Brandi A., Falconi M., Spurio R., Pon C.L., Gualerzi C.O. // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 10907–10911. https://doi.org/10.1073/PNAS.88.23.10907
- Hwang J., Severinov K., Phadtare S., Inouye M. // Gen. Cells. 2003. V. 8. P. 801–810. https://doi.org/10.1046/j.1365-2443.2003.00675.x
- Caballero C.J., Menendez-Gil P., Catalan-Moreno A., Vergara-Irigaray M., García B., Segura V., Irurzun N., Villanueva M., de Los Mozos I.R., Solano C., Lasa I., Toledo-Arana A. // Nucleic. Acids Res. 2018. V. 46. P. 1345. https://doi.org/10.1093/NAR/GKX1284
- Zhang Y., Burkhardt D.H., Rouskin S., Li G.W., Weissman J.S., Gross C.A. // Mol. Cell. 2018. V. 70. P. 274.e7–286.e7. https://doi.org/10.1016/J.MOLCEL.2018.02.035
- Choi J., Salvail H., Groisman E.A. // Nucleic. Acids Res. 2021. V. 49. P. 11614–11628. https://doi.org/10.1093/NAR/GKAB992
- Hofweber R., Horn G., Langmann T., Balbach J., Kremer W., Schmitz G., Kalbitzer H.R. // FEBS J. 2005. V. 272. P. 4691–4702. https://doi.org/10.1111/J.1742-4658.2005.04885.X
- Faßhauer P., Busche T., Kalinowski J., Mäder U., Poehlein A., Daniel R., Stülke J. // Microorganisms. 2021. V. 9. P. 1434. https://doi.org/10.3390/microorganisms9071434
- Michaux C., Holmqvist E., Vasicek E., Sharan M., Barquist L., Westermann A.J., Gunn J.S., Vogel J. // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. 6824–6829. https://doi.org/10.1073/pnas.1620772114
- Prezza G., Ryan D., Mädler G., Reichardt S., Barquist L., Westermann A.J. // Mol. Microbiol. 2022. V. 117. P. 67–85. https://doi.org/10.1111/MMI.14793
- Płociński P., Macios M., Houghton J., Niemiec E., Płocińska R., Brzostek A., Słomka M., Dziadek J., Young D., Dziembowski A. // Nucl. Acids Res. 2019. V. 47. P. 5892–5905. https://doi.org/10.1093/NAR/GKZ251
- Feng Y., Huang H., Liao J., Cohen S.N. // J. Biol. Chem. 2001. V. 276. P. 31651–31656. https://doi.org/10.1074/JBC.M102855200
- Loepfe C., Raimann E., Stephan R., Tasara T. // Foodborne Pathogens Dis. 2010. V. 7. P. 775–783. https://doi.org/10.1089/FPD.2009.0458
- Schmid B., Klumpp J., Raimann E., Loessner M.J., Stephan R., Tasara T. // Appl. Environ. Microbiol. 2009. V. 75. P. 1621–1627. https://doi.org/10.1128/AEM.02154-08
- Eshwar A.K., Guldimann C., Oevermann A., Tasara T. // Front. Cell. Infect. Microbiol. 2017. V. 7. P. 453. https://doi.org/10.3389/fcimb.2017.00453
- Portnoy D.A., Suzanne Jacks P., Hinrichs D.J. // J. Exp. Med. 1988. V. 167. P. 1459–1471. https://doi.org/10.1084/JEM.167.4.1459
- Slepkov E.R., Bitar A.P., Marquis H. // Biochem. J. 2010. V. 432. P. 557–566. https://doi.org/10.1042/BJ20100557
- Glomski I.J., Gedde M.M., Tsang A.W., Swanson J.A., Portnoy D.A. // J. Cell. Biol. 2002. V. 156. P. 1029–1038. https://doi.org/10.1083/JCB.200201081
- Kocks C., Gouin E., Tabouret M., Berche P., Ohayon H., Cossart P. // Cell. 1992. V. 68. P. 521–531. https://doi.org/10.1016/0092-8674(92)90188-I
- Welch M.D., Iwamatsu A., Mitchison T.J. // Nature. 1997. V. 385. P. 265–269. https://doi.org/10.1038/385265a0
- Travier L., Guadagnini S., Gouin E., Dufour A., Chenal-Francisque V., Cossart P., Olivo-Marin J.C., Ghigo J.M., Disson O., Lecuit M. // PLoS Pathog. 2013. V. 9. P. e1003131. https://doi.org/10.1371/JOURNAL.PPAT.1003131
- Crawford R.W., Rosales-Reyes R., Ramírez-Aguilar M.D.L.L., Chapa-Azuela O., Alpuche-Aranda C., Gunn J.S. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 4353–4358. https://doi.org/10.1073/pnas.1000862107
- Ray S., da Costa R., Das M., Nandi D. // J. Biol. Chem. 2019. V. 294. P. 9084–9099. https://doi.org/10.1074/JBC.RA119.008209
- Batte J.L., Samanta D., Elasri M.O. // Microbiology (Reading). 2016. V. 162. P. 575–589. https://doi.org/10.1099/MIC.0.000243
- Pandey S., Sahukhal G.S., Elasri M.O. // J. Bacteriol. 2019. V. 201. https://doi.org/10.1128/JB.00417-19
- Wang Z., Wang S., Wu Q. // FEMS Microbiol. Lett. 2014. V. 354. P. 27–36. https://doi.org/10.1111/1574-6968.12430
- Wang Z., Liu W., Wu T., Bie P., Wu Q. // Sci. China Life Sci. 2016. V. 59. P. 417–424. https://doi.org/10.1007/S11427-015-4981-6
- Weldingh K., Andersen P. // FEMS Immunol. Med. Microbiol. 1999. V. 23. P. 159–164. https://doi.org/10.1111/J.1574-695X.1999.TB01235.X
- D’Auria G., Esposito C., Falcigno L., Calvanese L., Iaccarino E., Ruggiero A., Pedone C., Pedone E., Berisio R. // Biochem. Biophys. Res. Commun. 2010. V. 402. P. 693–698. https://doi.org/10.1016/J.BBRC.2010.10.086
- Kumar A., Alam A., Tripathi D., Rani M., Khatoon H., Pandey S., Ehtesham N.Z., Hasnain S.E. // Semin. Cell Dev. Biol. 2018. V. 84. P. 147–157. https://doi.org/10.1016/J.SEMCDB.2018.01.003
- Huang L., Liu W., Jiang Q., Zuo Y., Su Y., Zhao L., Qin Y., Yan Q. // Front. Cell. Infect. Microbiol. 2018. V. 8. P. 207. https://doi.org/10.3389/FCIMB.2018.00207/BIBTEX
- Huang L., Zhao L., Qi W., Xu X., Zhang J., Zhang J., Yan Q. // Aquaculture. 2020. V. 518. P. 734861. https://doi.org/10.1016/J.AQUACULTURE.2019.734861
- Liu Y., Tan X., Cheng H., Gong J., Zhang Y., Wang D., Ding W. // Microb. Pathog. 2020. V. 142. P. 104091. https://doi.org/10.1016/J.MICPATH.2020.104091
- Schwenk S., Arnvig K.B. // Pathogens Dis. 2018. V. 76. P. 35. https://doi.org/10.1093/FEMSPD/FTY035
- Wexler A.G., Goodman A.L. // Nat. Microbiol. 2017. V. 2. P. 1–11. https://doi.org/10.1038/nmicrobiol.2017.26
Қосымша файлдар
