The relationship between ectothermy and endothermy in evolution of vertebrates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new version of the description of thermobiological statuses in vertebrates is proposed: primary and secondary ectotherms, primary and secondary endotherms. Primary ectothermal animals are the first amphibian-like tetrapods (among modern animals – fish and amphibians). They had a low level of metabolism, and most of the body temperature for a number of physiological reasons could not rise above 30°C and almost did not differ from the ambient temperatures. Then they developed a complex of biochemical and physiological aromorphoses, which increased their levels of mitochondrial oxidation and basal metabolism, and began to force them to raise their body temperature. This significantly improved the quality of their activity and other functional characteristics, allowed them to go on land and begin to master it. Already the first terrestrial tetrapods (stegocephalians, seymourians) had an increased metabolism about 330 million years ago. These were basic primary endotherms – mesometabolic animals whose body temperature could hardly rise noticeably more than 30°C; they still had insufficiently developed mechanisms of regulation and control over the levels of metabolism and heat production. In the synapsid line, metabolism gradually increased along with body temperature, and through theriodonts led to the appearance of secondary endothermic animals with constantly high, controlled and regulated tachymetabolism and thermometabolism – mammals. Sauropsids also had an increase in metabolism, and in some archosaurs (dinosaurs, etc.) it sometimes rose to the level of modern birds, and body temperature reached 39–44°C. Some of them developed into secondary endothermic tachymetabolic birds, and some other – into secondary ectothermic bradymetabolic modern reptiles with a periodic increase in body temperature to 30–45°C due to external heat. But secondary ectotherms (mainly modern reptiles) are not a “return” to the state of primary ectothermy, but a powerful evolutionary step forward. Having passed through the mesothermic stage of ancient reptiles in their evolution, they acquired the ability, unlike primary ectotherms, to withstand and use high body temperature (>30°C) for their functional and evolutionary benefit. It was by raising their body temperature that vertebrates increased the level of basal metabolism, improved the quality of activity, etc. Thus, the evolutionary function of reptiles is to “teach” primary ectothermic vertebrates to use high body temperature and in this regard become an “elevator” for further evolution of vertebrates. The vast majority of reptiles during their existence were meso- and tachymetabolic endothermic animals, i. e. warm-blooded to varying degrees, and bradymetabolic ectotherms, i. e., classical cold-blooded, turned out to be evolutionarily advanced modern reptiles. In general, ectothermal animals tend in their evolution to “align” with the temperature conditions of the external environment, “fit in” with them, use them. They periodically raise their body temperature due to external heat during periods when it is naturally available, thereby increasing the level of metabolism, the quality of activity and vital activity in the most energetically cheap way. Endothermic animals, on the contrary, try to reliably autonomize themselves from external conditions, raising body temperature mainly due to the endogenous thermogenesis, as a result of which their metabolism reliably and constantly increases, the quality of activity and vital activity improves. This approach is much more energy-intensive, but more reliable, and significantly less dependent on changeable environmental conditions, improving environmental valence and competitiveness. Thus, ectothermy and endothermy are two independent directions of the evolutionary development of vertebrates, each with its own strategy and ways of its implementation. At the same time, ectothermy is not a stage in the development of endothermy, but an independent evolutionary direction of the development of vertebrates, parallel to endothermy.

作者简介

V. Cherlin

Dagestan State University

编辑信件的主要联系方式.
Email: cherlin51@mail.ru
俄罗斯联邦, Batyraya str., 4-a, Makhachkala, Republic of Dagestan, 367008

参考

  1. Анисимова И.М., Лавровский В.В., 1983. Ихтиология. М.: Высшая школа. 255 с.
  2. Гаврилов В.М., 2012. Экологические, функциональные и термодинамические предпосылки и следствия возникновения гомойотермии на примере исследования энергетики птиц // Журн. общ. биологии. Т. 73. № 2. С. 88–113.
  3. Голованов В.К., 2013. Температурные критерии жизнедеятельности пресноводных рыб. М.: Полиграф-Плюс. 300 с.
  4. Жизнь животных по А.Э. Брему. Т. 3. Рыбы, земноводные, пресмыкающиеся, 1939 / Под ред. проф. Солдатова В.К. М.: Гос. Учебно-педагогическое изд. НАРКОМПРОСА. 892 с.
  5. Кузьмин С.Л., 1999. Земноводные бывшего СССР. М.: Т-во науч. изд. КМК. 298 с.
  6. Кутенков А.П., 2009. Экология травяной лягушки (Rana temporaria L., 1758) на Северо-западе России. Петрозаводск: Изд-во ПетрГУ. 140 с.
  7. Кутенков А.П., Целлариус Н.Б., 1988. Особенности активности травяной лягушки (Rana temporaria) в Карелии // Зоол. журн. Т. 67. № 7. С. 1038–1045.
  8. Литвинов Н.А., Ганщук С.В., 2009. Микроклиматические условия обитания ломкой веретеницы (Anguis fragilis, Reptilia, Sauria) в Камском Предуралье // Самарская Лука: проблемы региональной и глобальной экологии. Т. 18. № 1. С. 86–90.
  9. Никольский Г.В., 1963. Экология рыб. М.: Высш. шк. 368 с.
  10. Проссер Л., 1977. Сравнительная физиология животных. Т. 1. М.: Мир. 609 с.
  11. Рюмин А.В., 1940. Значение температуры в онтогенезе и филогенезе животных // Успехи соврем. биол. Т. 12. № 3. С. 504–515.
  12. Сабунаев В.Б., 1967. Занимательная ихтиология. Л.: Детская литература. 256 с.
  13. Содержание тигровой амбистомы, 2023. https://zooclub.ru/amfibii/soderzhanie/soderzhanie-tigrovoy-ambistomy.shtml
  14. Сосновский И.П., 1983. Амфибии и рептилии леса. М.: Лесная промышленность. 143 с.
  15. Татаринов Л.П., 1976. Морфологическая эволюция териодонтов и общие вопросы филогенетики. М.: Наука. 259 с.
  16. Черлин В.А., 1990. Стабилизация высокой температуры тела в эволюции позвоночных животных // Успехи соврем. биологии. Т. 109. № 3. С. 440–452.
  17. Черлин В.А., 2012. Организация процесса жизни как системы. СПб.: Изд-во “Русско-Балтийский информационный центр “БЛИЦ””. 124 с.
  18. Черлин В.А., 2014. Рептилии: температура и экология. Saarbrücken: Lambert Academic Publishing. 442 с.
  19. Черлин В.А., 2017. Значение изменений интенсивности сопряженного и несопряженного дыхания митохондрий в эволюции позвоночных животных // Успехи соврем. биол. Т. 137. № 5. С. 479–497.
  20. Черлин В.А., 2021а. Гипотеза о механизмах эволюционного процесса и его канализации на примере позвоночных животных. 1. Эволюция, связанная с высокой температурой тела // Успехи соврем. биологии. Т. 141. № 1. С. 78–104.
  21. Черлин В.А., 2021б. Гипотеза о механизмах эволюционного процесса и его канализации на примере позвоночных животных. 2. Некоторые механизмы эволюционного процесса у позвоночных // Успехи соврем. биологии. Т. 141. № 2. С. 189–208.
  22. Черлин В.А., 2021в. Эволюция термобиологических статусов у позвоночных животных. Статья 1. Температуры тела вымерших и современных рептилий // Журн. общ. биологии. Т. 82. № 6. С. 445–458.
  23. Черлин В.А., 2021г. Эволюция термобиологических статусов у позвоночных животных. Статья 2. Развитие отношений с температурой у позвоночных животных // Журн. общ. биологии. Т. 82. № 6. С. 459–477.
  24. Черлин В.А., 2022а. Отношения с температурой как один из важнейших факторов, направляющих эволюцию позвоночных животных // Современные проблемы биологической эволюции: Мат-лы IV Междунар. конф. к 875-летию Москвы и 115-летию со дня основания Государственного Дарвиновского музея. 17–20 октября 2022 г., Москва. М.: ГДМ. С. 357–359.
  25. Черлин В.А., 2022б. Новый взгляд на механизмы, пути и формы эволюции у позвоночных животных // Эволюционная и функциональна морфология позвоночных. Мат-лы II Всеросс. конф. и шк. для молодых ученых памяти Феликса Яновича Дзержинского. 6–9 октября 2022 г., Москва. М.: Т-во науч. изд. КМК. С. 334–342.
  26. Четанов Н.А., Литвинов Н.А., Югов М.В., 2014. Влияние температуры на интенсивность метаболизма у двух видов круглоголовок // Изв. Самарского науч. центра РАН. Т. 16. № 5 (1). С. 445–447.
  27. Ярцев В.В., Куранова В.Н., 2013. О возможности гибридизации приморского, Salamandrella tridactyla, и сибирского, S. keyserlingii, углозубов (Amphibia: Caudata, hynobiidae) // Вестн. ТГУ. Биология. № 3. С. 83–90.
  28. Bargelloni L., Marcato S., Patarnello T., 1998. Antarctic fish hemoglobins: Evidence for adaptive evolution at subzero temperature // PNAS USA. V. 95. P. 8670–8675.
  29. Bennett A.F., Ruben J.A., 1986. The metabolic and thermoregulatory status of therapsids // The Ecology and Biology of Mammal-Like Reptiles / Eds Hotton III N., MacLean P.D., Roth J.J., Roth E.C. Washington: Smithsonian Institution. P. 207–218.
  30. Bernard A., Lecuyer C., Vincent P., Amiot R., Bardet N., et al., 2010. Regulation of body temperature by some Mesozoic marine reptiles // Science. V. 328. № 5984. P. 1379–1382.
  31. Bi S., Amiot R., Peyre de Fabrègues C., Pittman M., Lamanna M.C., et al., 2020. An oviraptorid preserved atop an embryo-bearing egg clutch sheds light on the reproductive biology of non-avialan theropod dinosaurs // Sci. Bull. V. 66. № 9. P. 947–954.
  32. Carveth C.J., Widmar A.M., Bonar S.A., 2006. Comparison of upper thermal tolerance of native and nonnative fish species in Arizona // Trans. Am. Fisheries Soc. V. 135. № 6. P. 1433–1440.
  33. Dawson W.R., Tempelton J.R., 1966. Metabolism of lizards // Ecology. V. 47. P. 759–765.
  34. Dunlap D.G., 1969. Modification of metabolism in hylid frog, Acris // Comp. Biochem. Physiol. V. 31. P. 555–570.
  35. Eagle R.A., Enriquez M., Grellet-Tinner G., Perez-Huerta A., Hu D., et al., 2015. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs // Nat. Commun. V. 6. Art. 8296. https://doi.org/10.1038/ncomms9296
  36. Eagle R.A., Schauble E.A., Tripati A.K., Tütken T., Hulbert R.C., Eiler J.M., 2010. Body temperatures of modern and extinct vertebrates from13C-18O bond abundances in bioapatite // Proc. Natl. Acad. Sci. USA. V. 107. P. 10377–10382.
  37. Eagle R.A., Tütken T., Martin T.S., Tripati A.K., Fricke H.C., et al., 2011. Dinosaur body temperatures determined from isotopic (13C–18O) ordering in fossil biominerals // Science. V. 333. № 6041. P. 443–445.
  38. Estefa J., Klembara J., Tafforeau P., Sanchez S., 2020. Limb-bone development of seymouriamorphs: Implications for the evolution of growth strategy in stem amniotes // Front Earth Sci. V. 8. Art. 97. https://doi.org/10.3389/feart.2020.00097
  39. Faure-Brac M.G., Cubo J., 2020. Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps // Phil. Trans. Roy. Soc. B. Biol. Sci. V. 375. № 1793. https://doi.org/10.1098/rstb.2019.0138
  40. Galvao P.E., Tarasantchi J., Guertzenstein P., 1965. Heat production of tropical snakes // Amer. J. Physiol. V. 209. № 3. P. 501–506.
  41. Grigg G., Nowack J., Bicudo J.E.P.W., Bal N.C., Woodward H.W., Seymour R.S., 2021. Whole-body endothermy: Ancient, homologous and widespread among the ancestors of mammals, birds and crocodilians // Biol. Rev. V. 97. № 2. P. 766–801. https://doi.org/10.1111/brv.12822
  42. Hudson J.W., Bertram F.W., 1966. Metabolism of skink, Lygosoma // Physiol. Zool. V. 39. P. 21–29.
  43. Lambertz M., Shelton C.D., Spindler F., Perry S.F., 2016. A caseian point for the evolution of a diaphragm homologue among the earliest synapsids // Ann. N.-Y. Acad. Sci. V. 1385. № 1. P. 3–20.
  44. Legendre L.J., Guenard G., Botha-Brink J., Cubo J., 2016. Palaeohistological evidence for ancestral high metabolic rate in archosaurs // Syst. Biol. V. 65. P. 989–996.
  45. Meek R., Jolley E., 2006. Body temperatures of the common toad, Bufo bufo, in the Vendee, France // Herpetol. Bull. № 95. P. 21–24.
  46. Muñoz-Saravia A., Callapa G., Janssens G.P.J., 2018. Temperature exposure and possible thermoregulation strategies in the Titicaca water frog Telmatobius culeus, a fully aquatic frog of the High Andes // Endangered Species Res. V. 37. P. 91–103. https://doi.org/10.3354/esr00904
  47. Navas C.A., Carvajalino‐Fernández J.M., Saboyá‐ Acosta L.P., Rueda‐Solano L.A., Carvajalino‐ Fernández M.A., 2013. The body temperature of active amphibians along a tropical elevation gradient: Patterns of mean and variance and inference from environmental data // Funct. Ecol. V. 27. № 5. P. 1145–1154.
  48. Nunziata C., 2010. North American killifish. Part 1. Lucania goodei Jordan 1880. A summary review // Amer. Curr. V. 36. № 1. P. 23–33.
  49. Okada S., Utsunomiya T., Okada T., et al., 2008. Characteristics of Japanese giant salamander (Andrias japonicus) populations in two small tributary streams in Hiroshima prefecture, Western Honshu, Japan // Herpetol. Conserv. Biol. V. 3. № 2. P. 192–202.
  50. Pearson O.P., Bradford D.F., 1976. Thermoregulation of lizards and toad at high altitudes in Peru // Copeia. № 1. P. 155–170.
  51. Rausch C.M., Starkweather P.L., Breukelen F., van, 2008. One year in the life of Bufo punctatus: annual patterns of body temperature in a free-ranging desert anuran // Naturwissenschaften. B. 95. № 6. S. 531–535. https://doi.org/10.1007/s00114-008-0355-2
  52. Rey K., Amiot R., Fourel F., Abdala F., Fluteau F., et al., 2017. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades // eLife. V. 6. Art. e28589. https://doi.org/10.7554/eLife.28589
  53. Senanayake U.I., Siriwardana S., Weerakoon D.K., Wijesinghe M.R., 2019. Combating extreme tropical seasonality: Use of rock crevices by the critically endangered frog Nannophrys marmorata in Sri Lanka // Herpetol. Conserv. Biol. V. 14. № 1. P. 261–268.
  54. Seymour R.S., Smith S.L., White C.R., Henderson D.M., Schwarz-Wings D., 2012. Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs // Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. V. 279. P. 451–456.
  55. Tattersall G., Leite C., Sanders C. et al., 2016. Seasonal reproductive endothermy in tegu lizards // Sci. Adv. V. 2. Art. e1500951. https://doi.org/10.1126/sciadv.1500951
  56. Tigerstedt R., 1910. Die Production von Wärme und der Wärmehaushalt // Handbuch der Vergleichenden Physiologie / Ed. Winterstein H. Jéna: Springer. S. 1–104.
  57. Vernon H.M., 1897. The relation of the respiratory exchange of cold-blooded animals to temperature // Ebenda. V. 21. P. 443–496.
  58. Whitney M.R., Otoo B.K.A., Angielczyk K.D., Pierce S.E., 2022. Fossil bone histology reveals ancient origins for rapid juvenile growth in tetrapods // Commun. Biol. V. 5. Art. 1280 https://doi.org/10.1038/s42003-022-04079-0
  59. Wiemann J., Menéndez I., Crawford J.M., Fabbri M., Gauthier J.A., et al., 2022. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur // Nature. V. 606. P. 522–526.
  60. Xing L., Niu K., Ma W., Zelenitsky D.K., Tzu-Ruei Y., Brusatte S.L., 2021. An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures // iScience. V. 25. № 1. Art. 103516. https://doi.org/10.1016/j.isci.2021.103516

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024