Роль микроядер в элиминации хроматина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Микроядра представляют собой внеядерные хроматиновые компартменты, отделенные от основного ядра и окруженные собственной ядерной оболочкой. Долгое время считалось, что микроядра являются конечным этапом патологических процессов в клетке, и поэтому они использовались только в качестве биомаркеров влияния генотоксических факторов, а также нестабильности генома при различных заболеваниях. В настоящее время показано, что микроядра могут участвовать в процессе жизнедеятельности клеток, оказывать воздействие на ядерный геном и приводить к изменениям физиологии клеток и тканей. Известно, что образование микроядер является одним из этапов избирательной элиминации хроматина в онтогенезе некоторых видов растений и животных. При этом на уровне генома происходит узнавание участков, которые подлежат маркировке и удалению из ядра клеток; часто этот процесс сопровождается модификациями с образованием гетерохроматина, изменением конденсации хромосом и их положения в ядре. Процессы, наблюдаемые при избирательной и неизбирательной элиминации хроматина, во многом схожи. Поскольку роль микроядер в функционировании клеток еще плохо изучена, а состав микроядер и способы элиминации хроматина могут влиять на их роль в развитии патогенеза, это подчеркивает важность дополнительных исследований в этой области.

Полный текст

Доступ закрыт

Об авторах

Ю. Р. Ахмадуллина

Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства; Челябинский государственный университет

Автор, ответственный за переписку.
Email: akhmadullina.yul@yandex.ru
Россия, 454141, Челябинск, ул. Воровского, 68А; 454001, Челябинск, ул. Братьев Кашириных, 129

П. О. Хоменко

Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства

Email: akhmadullina.yul@yandex.ru
Россия, 454141, Челябинск, ул. Воровского, 68А

Список литературы

  1. Ахмадуллина Ю.Р., 2022. Состав микроядер в Т-лимфоцитах у женщин, подвергшихся хроническому радиационному воздействию // Радиационная биология. Радиоэкология. Т. 62. № 6. С. 591–601. https://doi.org/10.31857/S0869803122060030
  2. Боголюбова И.О., Боголюбов Д.С., 2023. Функциональные взаимодействия BAF и LEM-белков в процессах формирования половых клеток // Цитология. Т. 65. № 5. С. 407–419. https://doi.org/10.31857/S0041377123050036
  3. Кисурина-Евгеньева О.П., Брянцева С.А., Штиль А.А., Онищенко Г.Е., 2006. Антитубулиновые агенты могут инициировать различные пути апоптоза // Биофизика. Т. 51. № 5. С. 875–880.
  4. Кисурина-Евгеньева О.П., Сутягина О.И., Онищенко Г.Е., 2016. Биогенез микроядер // Биохимия. T. 81. C. 453–464. https://doi.org/10.1134/S0006297916050035
  5. Ablasser A., Chen Z.J., 2019. cGAS in action: Expanding roles in immunity and inflammation // Science. V. 363. № 6431. Art. eaat8657. https://doi.org/10.1126/science.aat8657
  6. Almacellas E., Pelletier J., Day C., et al., 2021. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability // Autophagy. V. 17. № 3. P. 796–813. https://doi.org/10.1080/15548627.2020.1764727
  7. Arsoy N.S., Neuss S., Wessendorf S., et al., 2009. Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage // Mutagenesis. V. 24. № 4. P. 351–357. https://doi.org/10.1093/mutage/gep015
  8. Bailey L.J., Bianchi J., Doherty A.J., 2019. PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells // Nucleic Acids Res. V. 47. № 8. P. 4026–4038. https://doi.org/10.1093/nar/gkz056
  9. Balajee A., Bertucci A., Taveras M., Brenner D., 2014. Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes // Mutagenesis. V. 29. P. 447–455. https://doi.org/10.1093/mutage/geu041
  10. Balajee A.S., Sanders J.T., Golloshi R., et al., 2018. Investigation of spatial organization of chromosome territories in chromosome exchange aberrations after ionizing radiation exposure // Health Phys. V. 115. P. 77–89. https://doi.org/10.1097/HP.0000000000000840
  11. Bao H., Cao J., et al. (Aging Biomarker Consortium), 2023. Biomarkers of aging // Sci. China Life Sci. V. 66. P. 893–1066. https://doi.org/10.1007/s11427-023-2305-0
  12. Barbu L., Obreja D., Duliu O., 2019. The cell micronuclei response to ionizing radiation in the case of gamma and x-ray exposure // Romanian J. Physics. V. 64. Art. 702.
  13. Barquinero J.F., Knehr S., Braselmann H., et al., 1998. DNA-proportional distribution of radiation-induced chromosome aberrations analyzed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype // Int. J. Radiat. Biol. V. 74. № 3. P. 315–323. https://doi.org/10.1080/095530098141456
  14. Bartsch K., Knittler K., Borowski C., et al., 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy // Hum. Mol. Genet. V. 26. № 20. P. 3960–3972. https://doi.org/10.1093/hmg/ddx283
  15. Bonacci T., Emanuele M.J., 2019. Impressionist portraits of mitotic exit: APC/C, K11-linked ubiquitin chains and Cezanne // Cell Cycle. V. 18. № 6–7. P. 652–660. https://doi.org/10.1080/15384101.2019.1593646
  16. Bull C.F., Mayrhofer G., Zeegers D., et al., 2012. Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay // Environ. Mol. Mutagen. V. 53. № 4. P. 311–323. https://doi.org/10.1002/em.21688
  17. Chang L., Li M., Shao S., et al., 2022. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells // Protein Cell. V. 13. P. 258–280. https://doi.org/10.1007/s13238-020-00794-8
  18. Chen Q., Sun L., Chen Z.J., 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing // Nat. Immunol. V. 17. № 10. P. 1142–1149. https://doi.org/10.1038/ni.3558
  19. Cho Y.H., Jang Y., Woo H.D., et al., 2019. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers // Environ. Mol. Mutagen. V. 60. № 2. P. 174–184. https://doi.org/10.1002/em.22237
  20. Cho Y.H., Kim S.Y., Woo H.D., et al., 2015a. Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation // Int. J. Environ. Res. Public Health. V. 12. P. 15162–15172. https://doi.org/10.3390/ijerph121214979
  21. Cho Y.H., Woo H.D., Jang Y., et al., 2015b. The association of LINE-1 hypomethylation with age and centromere positive micronuclei in human lymphocytes // PLoS One. V. 10. № 7. Art. e0133909. https://doi.org/10.1371/journal.pone.0133909
  22. Chung H.W., Kang S.J., Kim S.Y., 2002. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol // Mutat. Res. V. 516. № 1–2. P. 49–56.
  23. Crasta K., Ganem N.J., Dagher R., et al., 2012. DNA breaks and chromosome pulverization from errors in mitosis // Nature. V. 482. № 7383. P. 53–58. https://doi.org/10.1038/nature10802
  24. Decordier I., Dillen L., Cundari E., et al., 2002. Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules // Mutagenesis. V. 17. № 4. P. 337–344. https://doi.org/10.1093/mutage/17.4.337
  25. Dedukh D., Krasikova A., 2022. Delete and survive: Strategies of programmed genetic material elimination in eukaryotes // Biol. Rev. V. 97. № 1. P. 195–216. https://doi.org/10.1111/brv.12796
  26. Dumont M., Gamba R., Gestraud P., et al., 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features // EMBO J. V. 39. Art. e102924.
  27. Faheem M., Naseer M.I., Rasool M., et al., 2015. Molecular genetics of human primary microcephaly: An overview // BMC Med. Genomics. V. 8. Art. S4. https://doi.org/10.1186/1755-8794-8-S1-S4
  28. Fang W., Wang X., Bracht J.R., et al., 2012. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement // Cell. V. 151. № 6. P. 1243–1255. https://doi.org/10.1016/j.cell.2012.10.045
  29. Fauth E., Scherthan H., 1998. Frequencies of occurence of all human chromosomes in micronuclei from normal and 5-azacytidine-treated lymphocytes as revealed by chromosome painting // Mutagenesis. V. 13. № 3. P. 235–241. https://doi.org/10.1093/mutage/13.3.235
  30. Fauth E., Scherthan H., Zankl H., 2000. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilbestrol-induced micronuclei // Mutagenesis. V. 15. № 6. P. 459–467. https://doi.org/10.1093/mutage/15.6.459
  31. Fauth E., Zankl H., 1999. Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting // Mutat. Res. V. 440. № 2. P. 147–156. https://doi.org/10.1016/s1383-5718(99)00021-2
  32. Fenech M., 2007. Cytokinesis-block micronucleus cytome assay // Nat. Protoc. V. 2. P. 1084–1104. https://doi.org/10.1038/nprot.2007.77
  33. Fenech M., Holland N., Kirsch-Volders M., et al., 2019. Micronuclei and disease – Report of HUMN project workshop at Rennes 2019 EEMGS conference // Mutat. Res. Genet. Toxicol. Environ. Mutagen. V. 850– 851. Art. 503133. https://doi.org/10.1016/j.mrgentox.2020.503133
  34. Fenech M., Kirsch-Volders M., Natarajan A.T., et al., 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells // Mutagenesis. V. 26. № 1. P. 125–132. https://doi.org/10.1093/mutage/geq052
  35. Foster H.A., Estrada-Girona G., Themis M., et al., 2013. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells // Mutat. Res. V. 756. № 1–2. P. 66–77. https://doi.org/10.1016/j.mrgentox.2013.06.003
  36. García Fernández F., Fabre E., 2022. The dynamic behavior of chromatin in response to DNA double-strand breaks // Genes (Basel). V. 13. № 2. Art. 215. https://doi.org/10.3390/genes13020215
  37. Gernand D., Rutten T., Pickering R., Houben A., 2006. Elimination of chromosomes in Hordeum vulgare x H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization // Cytogenet. Genome Res. V. 114. № 2. P. 169–174. https://doi.org/10.1159/000093334
  38. Gisselsson D., Jonson T., Petersén A., et al., 2001. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors // Proc. Natl Acad. Sci. USA. V. 98. № 22. P. 12683–12688. https://doi.org/10.1073/pnas.211357798
  39. Giunta S., Hervé S., White R.R., et al., 2021. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy // Proc. Natl Acad. Sci. USA. V. 118. № 10. Art. e2015634118.
  40. Greciano P.G., Goday C., 2006. Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development // J. Cell Sci. V. 119. № 22. P. 4667–4677. https://doi.org/10.1242/jcs.03279
  41. Guo X., Ni J., Liang Z., Xue J., Fenech M.F., Wang X., 2019. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem // Mutat. Res. Rev. Mutat. Res. V. 779. P. 1–35. https://doi.org/10.1016/j.mrrev.2018.11.001
  42. Guttenbach M., Koschorz B., Bernthaler U., et al., 1995. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei // Am. J. Human Genetics. V. 57. № 5. P. 1143–1150.
  43. Guttenbach M., Schmid M., 1994. Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures // Exp. Cell Res. V. 211. № 1. P. 127–132. https://doi.org/10.1006/excr.1994.1068
  44. Halfmann C.T., Sears R.M., Katiyar A., et al., 2019. Repair of nuclear ruptures requires barrier-to-autointegration factor // J. Cell Biol. V. 218. № 7. P. 2136–2149. https://doi.org/10.1083/jcb.201901116
  45. Hämälistö S., Stahl J.L., Favaro E., et al., 2020. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation // Nat. Commun. V. 11. № 1. Art. 229. https://doi.org/10.1038/s41467-019-14009-0
  46. Hayashi M., 2006. The micronucleus test-most widely used in vivo genotoxicity test // Genes Environ. V. 38. Art. 18. https://doi.org/10.1186/s41021-016-0044-x
  47. Holecková B., Piesová E., Sivikova K., Dianovskỳ J., 2004. Chromosomal aberrations in humans induced by benzene // Ann. Agric. Environ. Med. V. 11. № 2. P. 175–179.
  48. Hovhannisyan G., Aroutiounian R., Babayan N., et al., 2016. Comparative analysis of individual chromosome involvement in micronuclei induced by mitomycin C and bleomycin in human leukocytes // Mol. Cytogenet. V. 9. Art. 49. https://doi.org/10.1186/s13039-016-0258-4
  49. Hovhannisyan G., Aroutiounian R., Liehr T., 2012. Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C // J. Histochem. Cytochem. V. 60. № 4. P. 316–322. https://doi.org/10.1369/0022155412436587
  50. IAEA, 2011. International Atomic Energy Agency Technical Reports Series No. 405. Cytogenetic Analysis for Radiation Dose Assessment: A Manual. Vienna: IAEA. 127 р.
  51. Iliakis G., Wang H., Perrault A.R., et al., 2004. Mechanisms of DNA double strand break repair and chromosome aberration formation // Cytogenet. Genome Res. V. 104. № 1–4. P. 14–20. https://doi.org/10.1159/000077461
  52. Itoh N., Shimizu N., 1998. DNA replication-dependent intranuclear relocation of double minute chromatin // J. Cell Sci. V. 111. № 22. P. 3275–3285.
  53. Ivanov A., Pawlikowski J., Manoharan I., et al., 2013. Lysosome-mediated processing of chromatin in senescence // J. Cell Biol. V. 202. № 1. P. 129–143. https://doi.org/10.1083/jcb.201212110
  54. Jagannathan M., Cummings R., Yamashita Y.M., 2018. A conserved function for pericentromeric satellite DNA // Elife. V. 7. Art. e34122. https://doi.org/10.7554/eLife.34122
  55. Jagannathan M., Cummings R., Yamashita Y.M., 2019. The modular mechanism of chromocenter formation in Drosophila // Elife. V. 8. Art. e43938. https://doi.org/10.7554/eLife.43938
  56. Kirsch-Volders M., Bolognesi C., Ceppi M., et al., 2020. Micronuclei, inflammation and auto-immune disease // Mutat. Res. Rev. Mutat. Res. V. 786. Art. 108335. https://doi.org/10.1016/j.mrrev.2020.108335
  57. Lazalde-Ramos B.P., Zamora-Perez A.L., Sosa-Macías M., et al., 2012. DNA and oxidative damages decrease after ingestion of folic acid in patients with type 2 diabetes // Arch. Med. Res. V. 43. № 6. P. 476–481. https://doi.org/10.1016/j.arcmed.2012.08.013
  58. Leach N.T., Jackson-Cook C., 2001. The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei // Mutat. Res. V. 495. № 1–2. P. 11–19. https://doi.org/10.1016/s1383-5718(01)00194-2
  59. Lee T.K., Wiley A.L., Jr, Esinhart J.D., Blackburn L.D., 1994. Radiation dose-dependent variations of micronuclei production in cytochalasin B-blocked human lymphocytes // Teratog. Carcinog. Mutagen. V. 14. № 1. P. 1–12. https://doi.org/10.1002/tcm.1770140102
  60. Leimbacher P.A., Jones S.E., Shorrocks A.K., et al., 2019. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis // Mol. Cell. V. 74. № 3. P. 571–583.E8. https://doi.org/10.1016/j.molcel.2019.02.014
  61. Li T., Chen Z.J., 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer // J. Exp. Med. V. 215. № 5. P. 1287–1299. https://doi.org/10.1084/jem.20180139
  62. Lindberg H.K., Wang X., Järventaus H., Falck G.C., et al., 2007. Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes // Mutat. Res. V. 617. № 1–2. P. 33–45. https://doi.org/10.1016/j.mrfmmm.2006.12.002
  63. Liu H., Wang F., Cao Y., et al., 2022. The multifaceted functions of cGAS // J. Mol. Cell Biol. V. 14. № 5. Art. mjac031. https://doi.org/10.1093/jmcb/mjac031
  64. Liu S., Pellman D., 2020. The coordination of nuclear envelope assembly and chromosome segregation in metazoans // Nucleus. V. 11. № 1. P. 35–52. https://doi.org/10.1080/19491034.2020.1742064
  65. Lu L., Ni J., Zhou T., et al., 2012 Choline and/or folic acid deficiency is associated with genomic damage and cell death in human lymphocytes in vitro // Nutr. Cancer. V. 64. № 3. P. 481–487. https://doi.org/10.1080/01635581.2012.660671
  66. Mackenzie K.J., Carroll P., Martin C.A., et al., 2017. cGAS surveillance of micronuclei links genome instability to innate immunity // Nature. V. 548. № 7668. P. 461–465. https://doi.org/10.1038/nature23449
  67. Maiato H., Afonso O., Matos I., 2015. A chromosome separation checkpoint: A midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition // Bioessays. V. 37. № 3. P. 257–266. https://doi.org/10.1002/bies.201400140
  68. Malaby H.L.H., Dumas M.E., Ohi R., Stumpff J., 2019. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15 // J. Cell Biol. V. 218. № 4. P. 1218–1234. https://doi.org/10.1083/jcb.201806195
  69. Medvedeva N.G., Panyutin I.V., Panyutin I.G., Neumann R.D., 2007. Phosphorylation of histone H2AX in radiation-induced micronuclei // Radiat. Res. V. 168. № 4. P. 493–498. https://doi.org/10.1667/RR0788.1
  70. Mochizuki K., 2010. DNA rearrangements directed by non-coding RNAs in ciliates // WIRs RNA. V. 1. № 3. P. 376–387. https://doi.org/10.1002/wrna.34
  71. Morgan W.F., Bair W.J., 2013. Issues in low dose radiation biology: the controversy continues. A perspective // Radiat. Res. V. 179. № 5. P. 501–510. https://doi.org/10.1667/RR3306.1
  72. Morishita M., Muramatsu T., Suto Y., et al., 2016. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system // Oncotarget. V. 7. № 9. P. 10182–10192. https://doi.org/10.18632/oncotarget.7186
  73. Mukherjee A., Alejandro J., Payne S., Thomas S., 1996. Age-related aneuploidy analysis of human blood cells in vivo by fluorescence in situ hybridization (FISH) // Mech. Ageing Dev. V. 90. P. 145–156. https://doi.org/10.1016/0047-6374(96)01762-9
  74. Nikitina V., Nugis V., Astrelina T., et al., 2022. Pattern of chromosomal aberrations persisting over 30 years in a Chernobyl Nuclear Power Plant accident survivor: study using mFISH // J. Radiat. Res. V. 63. № 2. P. 202–212. https://doi.org/10.1093/jrr/rrab131
  75. Okamoto A., Utani K., Shimizu N., 2011. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei // Mutagenesis. V. 27. № 3. P. 323–327.
  76. Oliveira Mann C.C., de, Kranzusch P.J., 2017. cGAS conducts micronuclei DNA surveillance // Trends Cell Biol. V. 27. № 10. P. 697–698. https://doi.org/10.1016/j.tcb.2017.08.007
  77. Oza P., Jaspersen S.L., Miele A., et al., 2009. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery // Genes Dev. V. 23. № 8. P. 912–927. https://doi.org/10.1101/gad.1782209
  78. Pang D., Yu S., Yang X., 2022. A mini-review of the role of condensin in human nervous system diseases // Front. Mol. Neurosci. V. 15. Art. 89796. https://doi.org/10.3389/fnmol.2022.889796
  79. Perondini A., Ribeiro A., 1997. Chromosome elimination in germ cells of Sciara embryos: involvement of the nuclear envelope // Invertebr. Reprod. Dev. V. 32. № 2. P. 131–141. https://doi.org/10.1080/07924259.1997.9672614
  80. Pfeiffer P., Goedecke W., Obe G., 2000. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations // Mutagenesis. V. 15. № 4. P. 289–302. https://doi.org/10.1093/mutage/15.4.289
  81. Prantera G., Bongiorni S., 2012. Mealybug chromosome cycle as a paradigm of epigenetics // Genet. Res. Int. V. 2012. Art. 867390. https://doi.org/10.1155/2012/867390
  82. Priore L., del, Pigozzi M.I., 2014. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch // Chromosoma. V. 123. № 3. P. 293–302. https://doi.org/10.1007/s00412-014-0451-3
  83. Reimann H., Stopper H., Hintzsche H., 2020. Long-term fate of etoposide-induced micronuclei and micronucleated cells in Hela-H2B-GFP cells // Arch. Toxicol. V. 94. № 10. Р. 3553–3561. https://doi.org/10.1007/s00204-020-02840-0
  84. Reimann H., Stopper H., Hintzsche H., 2023. Fate of micronuclei and micronucleated cells after treatment of HeLa cells with different genotoxic agents // Arch. Toxicol. V. 97. № 3. P. 875–889. https://doi.org/10.1007/s00204-022-03433-9
  85. Robijns J., Houthaeve G., Braeckmans K., De Vos W.H., 2018. Loss of nuclear envelope integrity in aging and disease // Int. Rev. Cell Mol. Biol. V. 336. P. 205–222. https://doi.org/10.1016/bs.ircmb.2017.07.013
  86. Ruban A., Schmutzer T., Wu D.D., et al., 2020. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development // Nat. Commun. V. 11. Art. 2764. https://doi.org/10.1038/s41467-020-16594-x
  87. Samwer M., Schneider M.W.G., Hoefler R., et al., 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes // Cell. V. 170. № 5. P. 956– 972.Е23. https://doi.org/10.1016/j.cell.2017.07.038
  88. Sawyer J.R., Swanson C.M., Wheeler G., Cunniff C., 1995. Chromosome instability in ICF syndrome: Formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization // Am. J. Med. Genet. V. 56. № 2. P. 203–209. https://doi.org/10.1002/ajmg.1320560218
  89. Sgura A., Antoccia A., Ramirez M.J., et al., 1997. Micronuclei, centromere-positive micronuclei and chromosome nondisjunction in cytokinesis blocked human lymphocytes following mitomycin C or vincristine treatment // Mutat. Res. V. 392. № 1–2. P. 97–107. https://doi.org/10.1016/s0165-1218(97)00048-7
  90. Shimizu N., Itoh N., Utiyama H., Wahl G.M., 1998. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase // J. Cell Biol. V. 140. № 6. P. 1307–1320. https://doi.org/10.1083/jcb.140.6.1307
  91. Shimizu N., Kapoor R., Naniwa S., et al., 2019. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells // BMC Mol. Cell Biol. V. 20. Art. 2. https://doi.org/10.1186/s12860-019-0186-3
  92. Soto M., García-Santisteban I., Krenning L., et al., 2018. Chromosomes trapped in micronuclei are liable to segregation errors // J. Cell Sci. V. 131. № 13. Art. jcs214742. https://doi.org/10.1242/jcs.214742
  93. Stacey M., Bennett M., Hulten M., 1995. FISH analysis on spontaneously arising micronuclei in the ICF syndrome // J. Med. Genetics. V. 32. № 7. P. 502–508. https://doi.org/10.1136/jmg.32.7.502
  94. Staiber W., 2006. Chromosome elimination in germ line–soma differentiation of Acricotopus lucidus (Diptera, Chironomidae) // Genome. V. 49. № 3. P. 269–274. https://doi.org/10.1139/g05-103
  95. Stopper H., Körber C., Gibis P., et al., 1995. Micronuclei induced by modulators of methylation: analogs of 5-azacytidine // Carcinogenesis. V. 16. № 7. P. 1647– 1650. https://doi.org/10.1093/carcin/16.7.1647
  96. Suzuki K., Ojima M., Kodama S., Watanabe M., 2003. Radiation-induced DNA damage and delayed induced genomic instability // Oncogene. V. 22. P. 6988–6993. https://doi.org/10.1038/sj.onc.1206881
  97. Télez M., Ortiz-Lastra E., Gonzalez A.J., et al., 2010. Assessment of the genotoxicity of atenolol in human peripheral blood lymphocytes: Correlation between chromosomal fragility and content of micronuclei // Mutat. Res. V. 695. № 1–2. P. 46–54. https://doi.org/10.1016/j.mrgentox.2009.02.015
  98. Terradas M., Martín M., Tusell L., Genescà A., 2009. DNA lesions sequestered in micronuclei induce a local defective-damage response // DNA Repair. V. 8. № 10. P. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004
  99. Tewari S., Khan K., Husain N., et al., 2016. Peripheral blood lymphocytes as in vitro model to evaluate genomic instability caused by low dose radiation // Asian Pac. J. Cancer Prev. V. 17. № 4. P. 1773–1777. https://doi.org/10.7314/apjcp.2016.17.4.1773
  100. Thierens H., Vral A., Morthier R., et al., 2000. Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay // Mutagenesis. V. 15. № 3. P. 245–249. https://doi.org/10.1093/mutage/15.3.245
  101. Timoshevskiy V.A., Herdy J.R., Keinath M.C., Smith J.J., 2016. Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (sea lamprey: Petromyzon marinus) // PLoS Genet. V. 12. № 6. Art. e1006103. https://doi.org/10.1371/journal.pgen.1006103
  102. Tommerup N., 1984. Idoxuridine induction of micronuclei containing the long or short arms of human chromosome 9 // Cytogenet. Cell Genet. V. 38. № 2. P. 92–98. https://doi.org/10.1159/000132038
  103. Tuck-Muller C.M., Narayan A., Tsien F., et al., 2000. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients // Cytogenet. Cell Genet. V. 89. № 1–2. P. 121–128. https://doi.org/10.1159/000015590
  104. Umbreit N.T., Zhang C.Z., Lynch L.D., et al., 2020. Mechanisms generating cancer genome complexity from a single cell division error // Science. V. 368. № 6488. Art. eaba0712. https://doi.org/10.1126/science.aba0712
  105. Utani K., Okamoto A., Shimizu N., 2011. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding // PloS One. V. 6. № 11. Art. e27233.
  106. Walker J.A., Boreham D.R., Unrau P., Duncan A.M., 1996. Chromosome content and ultrastructure of radiation-induced micronuclei // Mutagenesis. V. 11. № 5. P. 419–424. https://doi.org/10.1093/mutage/11.5.419
  107. Warecki B., Ling X., Bast I., Sullivan W., 2020. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels // J. Cell Biol. V. 219. № 3. Art. e201905091. https://doi.org/10.1083/jcb.201905091
  108. Zhang C.Z., Spektor A., Cornils H., et al., 2015. Chromothripsis from DNA damage in micronuclei // Nature. V. 522. № 7555. P. 179–184. https://doi.org/10.1038/nature14493
  109. Zhang L., Rothman N., Wang Y., et al., 1998. Increased aneusomy and long arm deletion of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene // Carcinogenesis. V. 19. № 11. P. 1955–1961. https://doi.org/10.1093/carcin/19.11.1955

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024