Синтез твердого электролита Li1.3Al0.3Ti1.7(PO4)3 из оксалатного прекурсора
- Авторы: Куншина Г.Б.1, Бочарова И.В.1
 - 
							Учреждения: 
							
- Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН
 
 - Выпуск: Том 70, № 6 (2025)
 - Страницы: 776-783
 - Раздел: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://archivog.com/0044-457X/article/view/686361
 - DOI: https://doi.org/10.31857/S0044457X25060052
 - EDN: https://elibrary.ru/IBJICR
 - ID: 686361
 
Цитировать
Полный текст
Аннотация
Предложен новый эффективный способ синтеза твердого электролита с высокой литий-ионной проводимостью со структурой NASICON состава Li1.3Al0.3Ti1.7(PO4)3 (LATP). Преимущество разработанного способа заключается в использовании жидкофазного прекурсора на основе оксалатного комплекса титана. Установлено, что при температуре 750°С образуется однофазный хорошо окристаллизованный LATP. Значение общей ионной проводимости LATP после спекания при 900°C, измеренное методом импедансной спектроскопии, составляло 2.6 × 10–4 См/см при комнатной температуре, а энергия активации проводимости – 0.28 эВ. Представленный способ синтеза перспективен для масштабирования и массового производства.
Ключевые слова
Полный текст
Об авторах
Г. Б. Куншина
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН
							Автор, ответственный за переписку.
							Email: g.kunshina@ksc.ru
				                					                																			                												                	Россия, 							Академгородок, 26а, Апатиты, 184209						
И. В. Бочарова
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН
														Email: g.kunshina@ksc.ru
				                					                																			                												                	Россия, 							Академгородок, 26а, Апатиты, 184209						
Список литературы
- Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93 (6). С. RCR5126. https://doi.org/10.59761/RCR5126
 - Yin J.-H., Zhu H., Yu S.-J. et al. // Adv. Eng. Mater. 2023. V. 25. P. 2300566. https://doi.org/10.1002/adem.202300566
 - Stenina I., Novikova S., Voropaeva D. et al. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
 - Jian Z., Hu Y.-S., Ji X. et al. // Adv. Mater. 2017. V. 29. P. 1601925. https://doi.org/10.1002/adma.201601925
 - Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. T. 68. № 12. С. 1683. https://doi.org/10.31857/S0044457X23601360
 - Lu X., Meng F., Huang S. et al. // Materials Letters. 2018. V. 230. P. 177. https://doi.org/10.1016/j.matlet.2018.07.103
 - Wang S., Ben L., Li H. et al. // Solid State Ionics. 2014. V. 268. Part A. P. 110. https://doi.org/10.1016/j.ssi.2014.10.004
 - Davis C. III, Nino J.C. // J. Am. Ceram. Soc. 2015. V. 98. P. 2422. https://doi.org/10.1111/jace.13638
 - Wu P., Zhou W., Su X. et al. // Adv. Energy Mater. 2023. V. 13. P. 2203440. https://doi.org/10.1002/aenm.202203440
 - Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
 - Duluard S., Paillassa A., Puech L. et al. // J. Eur. Ceram. Soc. 2013. V. 33. P. 1145. https://doi.org/10.1016/j.jeurceramsoc.2012.08.005
 - Schroeder M., Glatthaar S., Binder J.R. // Solid State Ionics. 2011. V. 201. P. 49. https://doi.org/10.1016/j.ssi.2011.08.014
 - Kotobuki M., Koishi M. // J. Asian Ceram. Soc. 2020. V. 8(3). P. 891. https://doi.org/10.1080/21870764.2020.1793876
 - Kotobuki M., Koishi M. // Ceram. Int. 2013. V. 39. № 4. P. 4645. https://doi.org/10.1016/j.ceramint.2012.10.206
 - Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Неорган. материалы. 2013. Т. 49. С. 59. https://doi.org/10.7868/S0002337X13010053
 - Bharathi P., Wang S.-F. // ACS Applied Nano Materials. 2024. V. 7 (2). P. 1615. https://doi.org/10.1021/acsanm.3c04581
 - Куншина Г.Б., Громов О.Г., Локшин Э.П. и др. // Журн. неорган. химии. 2014. Т. 59. С. 589. https://doi.org/10.7868/S0044457X14050122
 - Zhao E., Ma F., Jin Y. et al. // J. Alloys Compd. 2016. V. 680. P. 646. https://doi.org/10.1016/j.jallcom.2016.04.173
 - Yu S., Mertens A., Gao X. et al. // Funct. Mater. Lett. 2016. V. 9. P. 1650066. https://doi.org/10.1142/S1793604716500661
 - Aono H., Sugimoto E., Sadaoka Y. et al. // J. Electrochem. Soc. 1990. V. 137. P. 1023. https://doi.org/10.1149/1.2086597
 - Zaki A.A., Hashem H.M., Soltan S. et al. // Intern. J. Current Research. 2016. V. 8. P. 28385.
 - Cretin M., Fabry P. // J. Eur. Ceram. Soc. 1999. V. 19. P. 2931.
 - Куншина Г.Б., Бочарова И.В., Иваненко В.И. // Журн. прикл. химии. 2017. Т. 90. С. 312.
 - Rossbach A., Neitzel-Grieshammer S. // Open Ceramics. 2022. V. 9. P. 100231. https://doi.org/10.1016/j.oceram.2022.100231
 - Akhmetov N., Ovsyannikov N., Gvozdik N. et al. // J. Membrane Science. 2022. V. 643. P. 120002. https://doi.org/10.1016/j.memsci.2021.120002
 - Yin J., Zhang H., Zeng Z. et al. // J. Alloys and Compd. 2024. V. 988. P. 174346. https://doi.org/10.1016/j.jallcom.2024.174346
 - Bai F., Shang X., Nemori H. et al. // Solid State Ionics. 2019. V. 329. P. 40. https://doi.org/10.1016/j.ssi.2018.11.005
 - Lu X., Wang R., Zhang F. et al. // Solid State Ionics. 2020. V. 354. P. 115417. https://doi.org/10.1016/j.ssi.2020.115417
 - Dias J.A., Santagneli S.H., Messaddeq Y. // J. Phys. Chem. C. 2020. V. 124 (49). P. 26518. https://dx.doi.org/10.1021/acs.jpcc.0c07385
 - Tolganbek N., Yerkinbekova Y., Khairullin A. et al. // Ceram. Int. 2021. V. 47. P. 18188. https://doi.org/10.1016/j.ceramint.2021.03.137
 - Ren Y., Deng H., Zhao H. et al. // Ionics. 2020. V. 26. P. 6049. https://doi.org/10.1007/s11581-020-03781-5
 - Han F., Westover A.S., Yue J. et al. // Nature Energy. 2019. V. 4. P. 187. https://doi.org/10.1038/s41560-018-0312-z
 - Huang Y., Jiang Y., Zhou Y. et al. // Chem. Electro. Chem. 2019. V. 6. P. 6016. https://doi.org/10.1002/celc.201901687
 - Tsai Y.C., Ku M.C., Hsieh C.T. et al. // J. Solid State Electro. Chem. 2024. V. 28. P. 2047. https://doi.org/10.1007/s10008-023-05729-x
 
Дополнительные файлы
				
			
						
						
						
					
						
									










