Phase formation and optical properties of vanadium-doped aluminum oxynitride
- Autores: Ishchenko A.V.1, Akhmadullin N.S.2, Leonidov I.I.3, Sirotinkin V.P.2, Weinstein I.A.1,4, Kargin Y.F.2
 - 
							Afiliações: 
							
- Ural Federal University named after the first President of Russia B.N. Yeltsin
 - Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
 - Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
 - Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
 
 - Edição: Volume 70, Nº 4 (2025)
 - Páginas: 485-494
 - Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
 - URL: https://archivog.com/0044-457X/article/view/686938
 - DOI: https://doi.org/10.31857/S0044457X25040012
 - EDN: https://elibrary.ru/ATAPRG
 - ID: 686938
 
Citar
Texto integral
Resumo
The phase formation, morphology, and optical properties of aluminum oxynitride (Al5O6N) doped with vanadium ions were studied in the concentration range of 0.01–5.0 at. % (relative to aluminum). All samples were obtained by calcining mixtures of Al2O3, AlN, and V2O5 at a temperature of 1750°C in a nitrogen flow. The resulting materials were predominantly single-phase γ-AlON with minor impurities of aluminum nitride, as well as VC, VN, VO, or their solid solutions, for vanadium concentrations of ≥0.1 at. %. In AlON:V, the band gap (Eg) ranges from 5.82 to 5.94 eV, depending on the vanadium concentration. The luminescence of AlON:V is attributed to intrinsic defects and impurity luminescence centers. The presence of vanadium in AlON results in an increase in the optical absorption and a decrease in the intensity of intrinsic luminescence, which is caused by the formation of vanadium-containing impurity phases.
Palavras-chave
Texto integral
Sobre autores
A. Ishchenko
Ural Federal University named after the first President of Russia B.N. Yeltsin
							Autor responsável pela correspondência
							Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Mira str., 19, Yekaterinburg, 620002						
N. Akhmadullin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Leninsky Prospekt, 49, Moscow, 119334						
I. Leonidov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Pervomaiskaya str., 91, Yekaterinburg, 620077						
V. Sirotinkin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Leninsky Prospekt, 49, Moscow, 119334						
I. Weinstein
Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
														Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Mira str., 19, Yekaterinburg, 620002; Amundsen str., 101, Yekaterinburg, 620016						
Yu. Kargin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: a-v-i@mail.ru
				                					                																			                												                	Rússia, 							Leninsky Prospekt, 49, Moscow, 119334						
Bibliografia
- Mittal D., Hostaša J., Silvestroni L. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 14. P. 6303. https://doi.org/10.1016/j.jeurceramsoc.2022.06.080
 - Zgalat-Lozynskyy O., Tischenko N., Shirokov O. et al. // J. Mater. Eng. Perform. 2022. V. 31. № 3. P. 2575. https://doi.org/10.1007/s11665-021-06381-0
 - Jian X., Wang H., Lee M.-H.H. et al. // Materials (Basel). 2017. V. 10. № 7. P. 723. https://doi.org/10.3390/ma10070723
 - Chen C.F., Yang P., King G. et al. // J. Am. Ceram. Soc. 2016. V. 99. № 2. P. 424. https://doi.org/10.1111/jace.13986
 - Akhmadullina N.S., Ishchenko A.V., Yagodin V.V. et al. // Inorg. Mater. 2019. V. 55. № 12. P. 1223. https://doi.org/10.1134/S002016851912001X
 - Zhang L., Luo H., Zhou L. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 8. P. 3299. https://doi.org/10.1111/jace.15494
 - Ayman M.T., Chung W.J., Lee H. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 4. P. 1348. https://doi.org/10.1016/j.jeurceramsoc.2021.12.015
 - Chen L., Du F., Liang Y. et al. // Displays. 2022. V. 71. P. 102147. https://doi.org/10.1016/j.displa.2021.102147
 - Akhmadullina N.S., Ishchenko A. V., Lysenkov A.S. et al. // J. Alloys Compd. 2021. V. 887. P. 161410. https://doi.org/10.1016/j.jallcom.2021.161410
 - Zhang J., Ma C., Wen Z. et al. // Opt. Mater. (Amst). 2016. V. 58. P. 290. https://doi.org/10.1016/j.optmat.2016.05.048
 - Shao Z., Ren S. // Nanoscale Adv. 2020. V. 2. № 10. P. 4341. https://doi.org/10.1039/D0NA00519C
 - Latief U., Islam S.U., Khan M.S. // J. Alloys Compd. 2023. V. 941. P. 168985. https://doi.org/10.1016/j.jallcom.2023.168985
 - Fuertes V., Fernández J.F., Enríquez E. // Optica. 2019. V. 6. № 5. P. 668. https://doi.org/10.1364/OPTICA.6.000668
 - Yao A., Zhou X., Wu W. et al. // Chem. Phys. 2021. V. 546. P. 111170. https://doi.org/10.1016/j.chemphys.2021.111170
 - Liu L., Zhang J., Wang X. et al. // Mater. Lett. 2020. V. 258. P. 126811. https://doi.org/10.1016/j.matlet.2019.126811
 - Dong Q., Yang F., Cui J. et al. // Ceram. Int. 2019. V. 45. № 9. P. 11868.https://doi.org/10.1016/j.ceramint.2019.03.069
 - Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // J. Alloys Compd. 2023. V. 934. P. 167792.https://doi.org/10.1016/j.jallcom.2022.167792
 - Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // Phys. B Condens. Matter 2024. V. 695. P. 416593.https://doi.org/10.1016/j.physb.2024.416593
 - Ищенко А.В., Ахмадуллина Н.С., Пастухов Д.А. и др. // Неорганические материалы 2024. V. 60. № 3. P. 322.https://doi.org/10.31857/S0002337X24030083
 - Diana P., Sebastian S., Saravanakumar S. et al. // Phys. Scr. 2023. V. 98. № 3. P. 035825.https://doi.org/10.1088/1402-4896/acb7b1
 - Dorn M., Kalmbach J., Boden P. et al. // J. Am. Chem. Soc. 2020. V. 142. № 17. P. 7947.https://doi.org/10.1021/jacs.0c02122
 - Đačanin Far L., Dramićanin M. // Nanomaterials. 2023. V. 13. № 21. P. 2904.https://doi.org/10.3390/nano13212904
 - Pan J., Hansen H.A., Vegge T. // J. Mater. Chem. A 2020. V. 8. № 45. P. 24098.https://doi.org/10.1039/D0TA08313E
 - Шестаков В.А., Селезнев В.А., Мутилин С.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 651.https://doi.org/10.31857/S0044457X23600019
 - Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300.https://doi.org/10.31857/S0044457X22601389
 - Сидоров И., Жилинский В.В., Новиков В.П. // Неорган. материалы. 2023. Т. 59. № 6. С. 638.https://doi.org/10.31857/S0002337X23060131
 - Akhmadullina N.S., Lysenkov A.S., Konovalov A.A. et al. // Ceram. Int. 2022. V. 48. № 9. P. 13348.https://doi.org/10.1016/j.ceramint.2022.01.215
 - Doebelin N., Kleeberg R. // J. Appl. Crystallogr. 2015. V. 48. № 5. P. 1573. https://doi.org/10.1107/S1600576715014685
 - Solomonov V.I., Michailov S.G., Lipchak A.I. et al. // Laser Phys. 2006. V. 16. № 1. P. 126.https://doi.org/10.1134/S1054660X06010117
 - Ларионов В.А., Гуляева Р.И., Нифонтова Е.А. // Неорган. материалы. 2023. Т. 59. № 1. С. 61.https://doi.org/10.31857/S0002337X23010141
 - Batyrev I.G., Taylor D.E., Gazonas G.A. et al. // J. Appl. Phys. 2014. V. 115. № 2. P. 023505.https://doi.org/10.1063/1.4859435
 - Каргин Ю.Ф., Ахмадуллина Н.С., Лысенков А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1192.https://doi.org/10.31857/S0044457X20090056
 - Guo J.J., Wang K., Fujita T. et al. // Acta Mater. 2011. V. 59. № 4. P. 1671.https://doi.org/10.1016/j.actamat.2010.11.034
 - Zheng K., Wang H., Xu P. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 7. P. 4319.https://doi.org/10.1016/j.jeurceramsoc.2021.02.047
 - Kudyakova V.S., Leonidov I.I., Chaikin D.V. et al. // Ceram. Int. 2021. V. 47. № 12. P. 16876. https://doi.org/10.1016/j.ceramint.2021.02.263
 - Алтахов А.С., Горбунов Р.И., Кашарина Л.А. и др. // Письма в журнал технической физики 2016. Т. 42. № 21. С. 32. https://doi.org/10.21883/PJTF.2016.21.43838.16357
 - Kubelka P., Munk F. // Z. Tech. Phys 1931. V. 12. P. 593.
 - Du X., Yao S., Jin X. et al. // J. Phys. D. Appl. Phys. 2015. V. 48. № 34. P. 345104. https://doi.org/10.1088/0022-3727/48/34/345104
 - Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37. https://doi.org/10.1016/0025-5408(68)90023-8
 - Zhang X., Gao S., Li Z. et al. // Ceram. Int. 2019. V. 45. № 6. P. 7778. https://doi.org/10.1016/j.ceramint.2019.01.082
 - Spiridonov D.M., Weinstein I.A., Vokhmintsev A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 2. P. 211. https://doi.org/10.3103/S106287381502029X
 
Arquivos suplementares
				
			
						
						
					
						
						
									









