Synthesis and physicochemical properties of magnesium complexes with 4Н pyran ligands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

As a result of the interaction of 4-oxo-4H-pyran-2,6-dicarboxylic (chelidonic) acid with magnesium acetate, a cocrystalline compound was obtained – magnesium chelidonate. The study of the process of thermo-oxidative destruction of magnesium chelidonate showed that its dehydration occurs in two stages, and the thermal destruction of the organic part is accompanied by pronounced thermal effects. In the structure of magnesium chelidonate, there is both an internal and an external coordination sphere around the magnesium cation. The internal sphere includes six water molecules, forming a magnesium hexaaqua cation. The external sphere is formed by anionic residues of chelidonic acid, linked by hydrogen bonds with water molecules of the internal coordination sphere of the magnesium cation. The structure of magnesium chelidonate crystallizes in the triclinic syngony of the space group P1- and has an extensive network of hydrogen bonds between coordinated water molecules, acid anions and magnesium hexahydrate cations. Comparative analysis of the neuroprotective action of magnesium chelidonate and chelidonic acid showed that both compounds protected cultured neurons in a cellular ischemia model. This effect was expressed by a decrease in neuronal death during oxygen-glucose deprivation. At the same time, magnesium chelidonate was more effective than chelidonic acid at the same concentrations.

Texto integral

Acesso é fechado

Sobre autores

S. Kozin

Kuban State University; Southern Scientific Center of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kozinsv85@mail.ru

Laboratory of Problems of Distribution of Stable Isotopes in Living Systems

Rússia, Krasnodar, 350040; Rostov-on-Don, 344006

A. Kravtsov

Kuban State University; Southern Scientific Center of the Russian Academy of Sciences

Email: kozinsv85@mail.ru

Laboratory of Problems of Distribution of Stable Isotopes in Living Systems

Rússia, Krasnodar, 350040; Rostov-on-Don, 344006

V. Kindop

Kuban State University

Email: kozinsv85@mail.ru
Rússia, Krasnodar, 350040

A. Bespalov

Kuban State University

Email: kozinsv85@mail.ru
Rússia, Krasnodar, 350040

L. Ivaschenko

Kuban State University

Email: kozinsv85@mail.ru
Rússia, Krasnodar, 350040

M. Nazarenko

Kuban State University

Email: kozinsv85@mail.ru
Rússia, Krasnodar, 350040

A. Moiseev

Trubilin Kuban State Agrarian University

Email: kozinsv85@mail.ru
Rússia, Krasnodar, 350044

A. Churakov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozinsv85@mail.ru
Rússia, Moscow, 119991

A. Vashurin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: kozinsv85@mail.ru
Rússia, Moscow, 119991

Bibliografia

  1. Walter a E.R.H., Hogg C., Parker D., Williams J.A. G. // Coord. Chem. Rev. 2021. V. 428. P. 213622. https://doi.org/10.1016/j.ccr.2020.213622
  2. de Baaij J.H., Hoenderop J.G., Bindels R.J. // Physiol.Rev. 2015. V. 95. P. 1. https://doi.org/10.1152/physrev.00012.2014. PMID: 25540137
  3. Louis J. M., Randis T. M. // JAMA. 2023. V. 330. P. 597. https://doi.org/10.1001/jama.2023.10673.
  4. Kim S. J., Kim D.S., Li Sh. et al. // Biol. Chem. 2023. V. 66. P. 12. https://doi.org/10.1186/s13765-022-00763-1
  5. Singh D.K., Gulati K., Ray A. // Int. Immunopharmacol. 2016. V. 40. P. 229. https://doi.org/10.1016/j.intimp.2016.08.009
  6. Oh H.A., Kim H.M., Jeong H.J. // Int. Immunopharmacol. 2011. V. 11. P. 39. https://doi.org/10.1016/j.intimp.2010.10.002
  7. Kim D.S., Kim S.J., Kim M.C. et al. // Biol. Pharm. Bull. 2012. V. 35. P. 666. https://doi.org/10.1248/bpb.35.666
  8. Avdeeva E., Porokhova E., Khlusov I. et al. // Pharmaceuticals. 2021. V. 146. P. 579. https://doi.org/10.3390/ph14060579
  9. Jeong H.J., Yang S.Y., Kim H.Y. et al. // Exp. Biol. Med. 2016. V. 241. P. 1559. https://doi.org/10.1177/1535370216642044
  10. Kozin S.V., Kravtsov A.A., Kravchenko S.V. et al. // Bull. Exp. Biol. Med. 2021. V. 171. P. 619. https://doi.org/10.1007/s10517-021-05281-6
  11. Rogachevskii I.V., Plakhova V.B., Penniyaynen V.A. et al. // Can. J. Physiol. Pharmacol. 2022. V. 100. P. 43. https://doi.org/10.1139/cjpp-2021-0286
  12. Kravtsov A.A., Shurygin A.Y., Skorokhod N.S., Khaspekov L.G. // Bull. Exp. Biol. Med. 2011. V. 150. P. 436. https://doi.org/10.1007/s10517-011-1162-x
  13. Shurygina L.V., Zlishcheva E.I, Kravtsov A.A., Kozin S.V. // Bull. Exp. Biol. Med. 2021. V.171. P. 338. https://doi.org/10.1007/s10517-021-05223-2
  14. Khan A., Park T.J., Ikram M. et al. // Mol. Neurobiol. 2021. V.58. P. 5127. https://doi.org/10.1007/s12035-021-02460-4
  15. Yasodha V., Govindarajan S., Low J.N., Glidewell C. // Acta Crystallogr C. 2007. V. 63. P. 207. https://doi.org/10.1107/S010827010701459X
  16. Ivashchenko L.I., Kozin S.V., Vasileva L.V. et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 437. https://doi.org/10.31857/S0132344X22600412
  17. Case D.R., Gonzalez R., Zubieta J., Doyle R.P. // ACS Omega. 2021. V. 6. P. 29713. https://doi.org/10.1021/acsomega.1c04104
  18. Bannwarth C., Ehlert S., Grimme S. // J. Chem. Theory Comput. 2019. V. 15. P. 1652. https://doi.org/10.1021/acs.jctc.8b01176
  19. Pracht P., Grant D.F., Grimme S. // J. Chem. Theory Comput. 2020. V. 16. P. 7044. https://doi.org/10.1021/acs.jctc.0c00877
  20. Neese F. // WIREs Comput. Mol. Sci. 2011. V. 2. P. 73. https://doi.org/10.1002/wcms.81
  21. Neese F. // WIREs Comput. Mol. Sci. 2022. V. 12:c1606. P. 1. https://doi.org/10.1002/wcms.1606
  22. Kozin S., Kravtsov A., Ivashchenko L. et al. // Int. J. Mol. Sci. 2024. V. 25. P. 286. https://doi.org/10.3390/ijms25010286
  23. Kravtsov A., Kozin S., Basov A. et al. // Molecules. 2022. V. 27. P. 243. https://doi.org/10.3390/molecules27010243
  24. Malaganvi S.S., Tonannavar (Yenagi) J., Tonannavar J. // Heliyon. 2019. V. 5. P. 1. https://doi.org/10.1016/j.heliyon.2019.e01586
  25. Case D.R., Zubieta J., P Doyle R. // Molecules. 2020. V. 25. P. 3172. https://doi.org/10.3390/molecules25143172
  26. Khairnar S.I., Kulkarni Y.A., Singh K. // Rev Port Cardiol. 2024. V. 30. https://doi.org/10.1016/j.repc.2024.06.003.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Thermogravimetric curves of [Mg(H2O)6]3 - (Chel)2(HChel)2 - 6H2O.

Baixar (165KB)
3. Scheme 1: Preparation of a co-crystalline compound - magnesium chelidonate.

Baixar (26KB)
4. Fig. 2. Independent region in the structure of magnesium chelidonate. Thermal ellipsoids are shown at 50% probability. Hydrogen bonds are indicated by dashed lines.

Baixar (81KB)
5. Fig. 3. Effect of CGD on the fluorescence intensity of propidium iodide in cerebellar neuronal culture under the action of (a) magnesium chelidonate (Chelid. Mg), (b) chelidonic acid (CA). Data are presented M ± m; * - p < 0.05 with respect to intact cells; # - p < 0.05 with respect to cells exposed to CHD; $ - p < 0.05 with respect to chelidonic acid.

Baixar (63KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025