Titanization of C/SiC composite fibers in KCl–LiCl–K2TiF6 salt melt and production of ceramics from them

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Titanisation of C/SiC composite fibres with core-shell structure was carried out by synthesis in molten salts. A mixture of salts KCl, LiCl and K2TiF6 was used as the reaction medium, and metallic titanum powder was used as the titanising agent. The titanisation was carried out at a temperature of 800°C in a stationary argon atmosphere. Ceramic material was obtained from titanised fibres by hot pressing. The microstructure and phase composition of the fibres and hot pressed samples were investigated. It was found that Ti5Si3 and TiC phases are formed during titanation, and during hot pressing the Ti5Si3 phase reacts with the carbon core of C/SiC composite fibres to give titanium carbide TiC as a titanium-containing product. It was found that increasing the degree of titanisation leads to a decrease in porosity and an insignificant increase in strength of the obtained material.

全文:

受限制的访问

作者简介

E. Istomina

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

编辑信件的主要联系方式.
Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

P. Istomin

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

A. Nadutkin

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

V. Grass

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

I. Belyaev

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

O. Baeva

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

V. Tarasov

Institute of Chemistry of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

E. Tropnicov

Institute of Geology of Federal Research Centre “Komi Science Centre of the Ural Branch of the Russian Academy of Sciences”

Email: istomina-ei@yandex.ru
俄罗斯联邦, Syktyvkar, 167982

参考

  1. Xingui Z., Yua Y., Changrui Z. et al. // Mater. Sci. Eng., A. 2006. V. 433. P. 104. https://doi.org/10.1016/j.msea.2006.06.060
  2. Deng J., Wei Y., Liu W. // J. Am. Ceram. Soc. 1999. V. 82. № 6. P. 1629. https://doi.org/10.1111/j.1151-2916.1999.tb01976.x
  3. Filipuzzi L., Camus G., Naslain R. // J. Am. Ceram. Soc. 1994. V. 77. № 2. P. 459. https://doi.org/10.1111/j.1151-2916.1994.tb07015.x
  4. Гаршин А.П., Кулик В.И., Нилов А.С. // Новые огне402.2010.02529упоры. 2012. № 2. С. 43.
  5. Воробьёв А.А., Кулик В.А. и др. // Известия ПГУПС. 2020. Т. 17. № 2. С. 210. https://doi.org/10.20295/1815-588X-2020-2-210-220
  6. Krenkel W., Berndt F. // Mater. Sci. Eng., A. 2005. V. 412. № 1–2. P. 177. https://doi.org/10.1016/j.msea.2005.08.204
  7. Fan S., Yang C., He L. et al.// Rev. Adv. Mater. Sci. 2016. V. 44. P. 313.
  8. Гаршин А.П., Кулик В.И., Матвеев С.А. и др. // Новые огнеупоры. 2017. Т. 4. С. 20. https://doi.org/10.17073/1683-4518-2017-4-20-35
  9. Yang J., Ai Y., Lv X. et al. // J. Int. Appl. Ceram. Technol. 2021. V. 18. №. 2. P. 449. https://doi.org/10.1111/ijac.13655
  10. Крамаренко Е.И., Кулаков В.В., Кенигфест А.М. и др. // Изв. Самар. Науч. центра РАН. 2011. Т. 13. № 4. С. 759.
  11. Воротыло С., Левашов Е.А., Потанин А.Ю. и др. // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2020. Т. 1. С. 41. https://doi.org/10.17073/1997-308X-2020-41-54
  12. Орбант Р.А., Уткин А.В. Банных Д.А. и др. // Неорган. материалы. 2023. Т. 59. № 11. С. 1253. https://doi.org/10.31857/s0002337x2311009x
  13. Istomina E.I., Istomin P.V., Nadutkin A.V. et al. // Ceram. Int. 2021. V. 47. № 16. P. 22587. https://doi.org/10.1016/j.ceramint.2021.04.270
  14. Истомина Е.И., Истомин П.В., Надуткин А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 977. https://doi.org/10.1134/S0036023621080088
  15. Гаршин А.П. Материаловедение. Техническая керамика в машиностроении / Учебник для вузов. 2-е изд., испр. и доп. М.: Изд-во Юрайт. 2024. 296 с.
  16. Nadeau J.S. // Am. Ceram. Soc. Bull. 1973. V. 52. № 2. P. 170.
  17. Kinoshita M., Matsumura H., Iwasa M., Hayami R. // J. Ceram. Soc. Jpn. 1981. V. 89. № 6. P. 302.
  18. Yano T., Budiyanto K., Yoshida K., Iseki T. // Fusion Eng. Des. 1998. V. 41. P. 157.
  19. Zou Ch., Ou Y., Zhou W., Li Zh. et al. // Mater. 2024. V. 17. № 5. P. 1182. https://doi.org/10.3390/ma17051182
  20. Перевислов С.Н., Лысенков А.С. и др. // Неорган. материалы. 2017. Т. 53. № 2. С. 206. https://doi.org/10.7868/S0002337X17020099
  21. Samanta A.K., Dhargupta K.K., De A.K., Ghatak S. // Ceram. Int. 2000. V. 26. P. 831. https://doi.org/10.1016/S0272-8842(00)00050-X
  22. Ye H., Rixecker G., Haug S., Aldinger F. // J. Eur. Ceram. Soc. 2002. V. 22. Р. 2379. https://doi.org/10.1016/S0955-2219(02)00006-7
  23. Kirianov A., Yamaguchi A. // Ceram. Int. 2000. V. 26. Р. 441. https://doi.org/10.1016/S0272-8842(99)00080-2
  24. Zhou Y., Hirao K. et al. // J. Mater. Res. 2003. V. 18. № 8. P. 1854. https://doi.org/10.1557/JMR.2003.0259
  25. Van Dijen F.K., Mayer E.// J. Eur. Ceram. Soc. 1996. V. 16. Р. 413. https://doi.org/10.1016/0955-2219(95)00129-8
  26. Rixecker G., Wiedmann I., Rosinus A., Aldinger F. et al. // J. Eur. Ceram. Soc. 2001. V. 21. P. 1013. https://doi.org/10.1016/S0955-2219(00)00317-4
  27. Biswas K., Rixecker G., Wiedmann I., Scweizer M. et al. // Mater. Chem. Phys. 2001. V. 67. P. 180. https://doi.org/10.1016/S0254-0584(00)00437-5
  28. Ye H., Rixecker G., Haug S., Aldinger F. // J. Eur. Ceram. Soc. 2002. V. 22. Р. 2379. https://doi.org/10.1016/S0955-2219(02)00006-7
  29. Maitre A., Put A.V., Laval J. P., Valette S., Trolliard G. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1881. https://doi.org/10.1016/j.jeurceramsoc.2008.01.002
  30. Guo W., Xiao H., Liu J., Liang J. et al. // Ceram. Int. 2015. V. 41. № 9. P. 11117. https://doi.org/10.1016/j.ceramint.2015.05.059
  31. Magnani G., Beltrami G. et al. // J. Eur. Ceram. Soc. 2001. V. 21. № 5. P. 633. https://doi.org/10.1016/S0955-2219(00)00244-2
  32. Huang Z.H., Jia D.C., Liu Y.G. // Ceram. Int. 2003. V. 29. Р. 13. https://doi.org/10.1016/S0272-8842(02)00082-2
  33. Житнюк С.В. // Труды ВИАМ. 2019. № 3. С. 79.
  34. Raju K., Yoon D.H // Ceram. Int. 2016 V. 42. № 16. P. 17947. https://doi.org/10.1016/j.ceramint.2016.09.022
  35. Марков М. А., Николаев А. Н., Чекуряев А. Г. и др. // Физика и химия стекла. 2024. Т. 50. № 3. С. 24. https://doi.org/10.31857/S0132665124030035
  36. Suzuki K., Somiya S., Inomata Y. Ceramics / V. 2. London: Elsevier, 1991. P. 163.
  37. Zhu Y., Qin Z., Chai J.et al. // Metall. Mater. Trans. A. 2022. V. 53. P. 1188. https://doi.org/10.1007/s11661-021-06554-5
  38. Singh S., Pai K. // Ceram. Int. 2021. V. 47. № 10. Part B. P. 14809. https://doi.org/10.1016/j.ceramint.2020.10.068
  39. Baitalik S., Molla A.R., Kayal N. // J. Alloys Compd. 2018. V. 767. № 30. P. 302. https://doi: 10.1016/j.jallcom.2018.07.069
  40. Симоненко Н.П., Николаев В.А., Симоненко Е.П. и др. // Журн. неорган. химии. 2016. Т. 61. № 12. С. 1566. https://doi.org/10.1134/S0036023616120184
  41. Истомина Е.И., Истомин П.В., Надуткин А.В. и др. // Сборник тезисов докладов. ХХII Менделеевский съезд по общей и прикладной химии. Том 1. М.: ООО “Адмирал Принт”. 2024. С. 404
  42. Huang Z, Li F., Jiao Ch. et al. // Ceram. Int. 2016. V. 42. № 5. P. 6221. https://doi.org/10.1016/j.ceramint.2016.01.004
  43. Gupta S.K., Mao Y.// J. Phys. Chem. 2021. V. 125. P. 6508. https://doi.org/10.1021/acs.jpcc.0c10981
  44. Li S., Song J., Che Y., Jiao S. et al. // Energ. Environ. Mater. 2023. V. 6. P. e12339. https://doi.org/10.1002/eem2.12339
  45. Liu X., Wang Z., Zhang S. // Int. J. Appl. Ceram. Technol. 2011. V. 8. P. 911. https://doi.org/10.1111/j.1744-7402.2010.02529.x
  46. Soe H.N., Khangkhamano M., Sangkert S. et al. // Mater. Lett. 2018. V. 229. P. 118. https://doi.org/10.1016/j.matlet.2018.06.125
  47. Behboudi F., Kakroudi M.G., Vafa N.P. et al. // Ceram. Int. 2021. V. 47. P. 8161. https://doi.org/10.1016/j.ceramint.2020.11.172
  48. Ye J., Zhang S., Lee W.E. // J. Eur. Ceram. Soc. 2013. V. 33. P. 2023. https://doi.org/10.1016/j.jeurceramsoc.2013.02.011
  49. Yin Y., Wang S., Zhang S. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 1529. https://doi.org/10.1111/ijac.13961
  50. Li Y., Yin Y., Chen J., Kang X. et al. // Materials. 2023. V. 16. P. 5895. https://doi.org/10.3390/ma16175895
  51. Li H., Xie Y., Wang H., Qian Z. et al. // J. Alloys Compd. 2022. V. 928. P. 167142. https://doi.org/10.1016/j.jallcom.2022.167142
  52. Luo Y., Liu Z., Yu C., Deng C., Ding J. // J. Eur. Ceram. Soc. 2024. V. 44. P. 7953. https://doi.org/10.1016/j.jeurceramsoc.2024.05.066
  53. Fan S., Deng C., Yu C., Liu Z., Ding J. // J. Mater. Res. Technol. 2024. V. 29. P. 4833. https://doi.org/10.1016/j.jmrt.2024.02.201
  54. Tarasov V.O., Istomina E.I., Istomin P.V. et al. // Ceram. Int. 2024. V. 590. P. 46136. https://doi.org/10.1016/j.ceramint.2024.08.363
  55. Zou Y., Huang X., Fan B., Tang Z. et al. // Ceram. Int. 2023. V. 49. P. 8048. https://doi.org/10.1016/j.ceramint.2022.10.323
  56. Yang J., Ye F., Cheng L. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1197. https://doi.org/10.1016/j.jeurceramsoc.2021.12.004
  57. Baumli P., Sytchev J., Göndör Zs. H., Kaptay G. // Mater. Sci. Forum. 2005. V. 473. P. 39. https://doi.org/10.4028/www.scientific.net/MSF.473-474.39
  58. Kim H.-J., Ahn Y.-S. // J. Alloys Compd. 2020. V. 849. P. 156508. https://doi.org/10.1016/j.jallcom.2020.156508
  59. Zhu T., Wang Zh. // Rev. Adv. Mater. Sci. 2024. V. 63. P. 20240029. https://doi.org/10.1515/rams-2024-0029
  60. Xu Y., Sun W., Miao C., Shen Y. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 11. P. 5405. https://doi.org/10.1016/j.jeurceramsoc.2021.04.043
  61. Du Y., Schuster J.C. // J. Am. Ceram. Soc. 2000. V. 83. № 1. P. 197. https://doi.org/10.1111/j.1151-2916.2000.tb01170.x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic diagram of a reactor for siliconizing carbon fibers [13,14]: a cylindrical corundum crucible with slit-shaped channels located along the entire height of the side wall (1); a sealing lid made of graphite foil (2); cylindrical corundum crucibles (3–5).

下载 (292KB)
3. Fig. 2. General scheme for obtaining a ceramic composite material from C/SiC fibers.

下载 (169KB)
4. Fig. 3. X-ray diffraction patterns of samples: original carbon fibers (a); C/SiC composite fibers (b); fibers titanated using salt composition A (c); fibers titanated using salt composition B (d); ceramic sample GP-A (d); ceramic sample GP-B (e).

下载 (316KB)
5. Fig. 4. Micrograph of a C/SiC composite fiber bundle in cross section and X-ray microanalysis spectra.

下载 (102KB)
6. Fig. 5. Electron microimage and X-ray diffraction spectra of titanated C/SiC fibers before the stage of washing the salt melt.

下载 (232KB)
7. Fig. 6. Electron microimages of titanated fibers and X-ray microanalysis spectra.

下载 (234KB)
8. Fig. 7. Electron microimages and X-ray diffraction spectra of a sample obtained by hot pressing of C/SiC composite fibers pre-titaniumized in a salt melt of composition A: microimage and X-ray diffraction spectra (a); elemental mapping (b–d).

下载 (516KB)
9. Fig. 8. Electron microimages and X-ray diffraction spectra of a sample obtained by hot pressing of C/SiC composite fibers pre-titaniumized in a salt melt of composition B: microimage and X-ray diffraction spectra (a); elemental mapping (b–d).

下载 (510KB)
10. Fig. 9. Electron microimage of the contact area of ​​titanated fibers after hot pressing for the GP-B sample.

下载 (277KB)

版权所有 © Russian Academy of Sciences, 2025