Optimization of Entangling Logic Gates Based on the Rydberg Blockade Effect

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The implementation of a quantum logic gate in a system of cold atoms in optical microtraps is analyzed. The dynamics of two spin qubits is simulated, and a number of processes that limit the efficiency of entanglement based on the Rydberg blockade effect are considered. A geometry of two-photon excitation of Rydberg states of atoms is proposed that makes it possible to increase the robustness of the system to variations in a number of parameters and to reduce losses associated with the incoherent scattering of the driving field.

作者简介

L. Gerasimov

Quantum Technology Centre, Faculty of Physics, Lomonosov Moscow State University; Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University

Email: gerasimov_lv@spbstu.ru
Moscow, 119991 Russia;St. Petersburg, 195251 Russia

D. Kupriyanov

Quantum Technology Centre, Faculty of Physics, Lomonosov Moscow State University

Email: gerasimov_lv@spbstu.ru
Moscow, 119991 Russia

S. Straupe

Quantum Technology Centre, Faculty of Physics, Lomonosov Moscow State University;Russian Quantum Center

编辑信件的主要联系方式.
Email: gerasimov_lv@spbstu.ru
Moscow, 119991 Russia;Skolkovo, Moscow, 121205 Russia

参考

  1. D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuleti'c, and M. D. Lukin, Nature 604, 451 (2022).
  2. T.-Y. Wu, A. Kumar, F. Giraldo, and D. S. Weiss, Nature Phys. 15, 6 (2019).
  3. T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Sa man, Phys. Rev. Lett. 123, 230501 (2019).
  4. P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D. Barredo, K.-N. Shymik, V. Lienhard, L.-P. Henry, T. C. Lang, T. Lahaye, A. M. Lauchli, and A. Browaeys, Nature 595, 233 (2021).
  5. L. V. Gerasimov, R. R. Yusupov, I. B. Bobrov, D. Shchepanovich, E. V. Kovlakov, S. S. Straupe, S. P. Kulik, and D. V. Kupriyanov, Phys. Rev. A 103, 062426 (2021).
  6. M. Sa man, J. Phys. B: Atom. Mol. Opt. Phys. 49, 202001 (2016).
  7. L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, Quantum 4, 327 (2020).
  8. X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu, M. K. Tey, and L. You, Chinese Phys. B 30, 020305 (2021).
  9. C. Sheng, X. He, P. Xu, R. Guo, K. Wang, Z. Xiong, M. Liu, J. Wang, and M. Zhan, Phys. Rev. Lett. 121, 240501 (2018).
  10. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Lett. 82, 1060 (1999).
  11. D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).
  12. L. You and M. S. Chapman, Phys. Rev. A 62, 052302 (2000).
  13. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cˆot'e, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
  14. X.-F. Shi, Quant. Sci. Technol. 7, 023002 (2022).
  15. L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, C. I. Sukenik, and D. V. Kupriyanov, Phys. Rev. A 106, 042410 (2022).
  16. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuleti'c, H. Pichler, and M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).
  17. M. Sa man, I. I. Beterov, A. Dalal, E. J. P'aez, and B. C. Sanders, Phys. Rev. A 101, 062309 (2020).
  18. I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet, and M. Sa man, Phys. Rev. A 98, 042704 (2018).
  19. I. Vybornyi, L. Gerasimov, D. Kupriyanov, S. Straupe, and K. Tikhonov, arXiv:2206.12171 [quant-ph] (2022).
  20. А. Г. Бутковский, Ю. И. Самойленко, Управление квантовомеханическими процессами, Наука, Москва (1984).
  21. T. H. Chang, T. N. Wang, H. H. Jen, and Y. C. Chen, arXiv:2303.16395 [quant-ph] (2023).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023