YBaCo4O7 + x (x = 0, 0.1) System: From Antiferromagnetism to Ferromagnetism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The modification of magnetic and elastic properties of YBaCo4O7 + x (x = 0, 0.1) cobaltites at a slight controlled deviation from stoichiometry (x) has been investigated. The magnetic properties of stoichiometric YBaCo4O7 demonstrate nontrivial behavior, which is inconsistent with the generally accepted notion of phase transitions with long-range magnetic order. Only magnetic moment ΔM = MFC – MZFC induced by an external magnetic field (an analog of thermoremanent magnetization) exhibits anomalies at magnetic phase transition temperatures TN1 and TN2 that coincide with those of Young’s modulus anomalies, whereas in the magnetic susceptibility curves taken in the FC and ZFC modes, phase transitions are not discerned. At a small off-stoichiometry (x = 0.1), induced moment ΔM rises by an order of magnitude and a residual ferromagnetic moment of about 10–3 μB arises in the magnetization curves. Two scenarios of the cobalt subsystem magnetic behavior with increasing part of cobalt ions Co3+ have been discussed. It has been found that when YBaCo4O7 + x cobaltites deviate from stoichiometry, the evolution of their magnetic properties is similar to that observed at the transition from Y-based to Ca-based cobaltite.

About the authors

Z. A. Kazey

Moscow State University

Email: kazei@plms.phys.msu.ru
Moscow, 119992 Russia

M. M. Markina

Moscow State University

Email: kazei@plms.phys.msu.ru
Moscow, 119992 Russia

V. V. Snegirev

Moscow State University

Email: kazei@plms.phys.msu.ru
Moscow, 119992 Russia

M. S. Stolyarenko

Moscow State University

Author for correspondence.
Email: kazei@plms.phys.msu.ru
Moscow, 119992 Russia

References

  1. P. Schi er, and A. P. Ramirez, Comments Condens. Matter Phys. 18, 21 (1996).
  2. M. J. Harris and M. P. Zinkin, Mod. Phys. Lett. B 10, 417 (1996).
  3. J. N. Reimers and A. J. Berlinsky, Phys. Rev. B 48, 9539 (1993).
  4. P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindzingre, Phys. Rev. B 56, 2521 (1997).
  5. L. C. Chapon, P. G. Radaelli, H. Zheng et al., Phys. Rev. B 74, 172401 (2006).
  6. P. Manuel, L. C. Chapon, P. G. Radaelli et al., Phys. Rev. Lett. 103, 037202 (2009).
  7. W. Schweika, M. Valldor, and P. Lemmens, Phys. Rev. Lett. 98, 067201 (2007).
  8. V. Caignaert, V. Pralong, A. Maignan et al., Solid State Commun. 149, 453 (2009).
  9. V. Caignaert, V. Pralong, V. Hardy et al., Phys. Rev. B 81, 094417 (2010).
  10. K. Singh, V. Caignaert, L. C. Chapon et al., Phys. Rev. B 86, 024410 (2012).
  11. E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson et al., Phys. Rev. B 79, 064109 (2009).
  12. E. V. Tsipis, J. C. Waerenborgh, M. Avdeev et al., J. Sol. St. Chem. 182, 640 (2009).
  13. Л. П. Козеева, М. Ю. Каменева, А. И. Смоленцев и др., ЖСХ 6, 1108 (2008).
  14. A. Huq, J. F. Mitchell, H. Zheng et al., J. Sol. St. Chem. 179, 1136 (2006).
  15. D. D. Khalyavin, L. C. Chapon, P. G. Radaelli et al., Phys. Rev. B 80, 144107 (2009).
  16. D. D. Khalyavin, P. Manuel, B. Ouladdiaf et al., Phys. Rev. B 83, 094412 (2011).
  17. M. Markina, A. N. Vasiliev, N. Nakayama et al., J. Magn. Magn. Mat. 332, 1249 (2010).
  18. M. Valldor, Y. Sanders, and W. Schweika, J. Phys.: Confer. Ser. 145, 012076 (2009).
  19. M. J. R. Hoch, P. L. Kuhns, S. Yuan et al., Phys. Rev. B 87, 064419 (2013).
  20. M. Soda, Y. Yasui, T. Moyoshi et al., J. Phys. Soc. Jpn. 75, 054707 (2006).
  21. N. Nakayama, T. Mizota, Y. Ueda et al., J. Magn. Magn. Mat. 300, 98 (2006).
  22. V. Caignaert, A. Maignan, K. Singh et al., Phys. Rev. B 88, 174403, (2013).
  23. A. Maignan, V. Caignaert, D. Pelloquin et al., Phys. Rev. B 74, 165110 (2006).
  24. З. А. Казей, В. В. Снегирев, А. С. Андреенко и др., ЖЭТФ 140, 282 (2011).
  25. З. А. Казей, В. В. Снегирев, М. С. Столяренко, Письма в ЖЭТФ 112, 189 (2020).
  26. З. А. Казей, В. В. Снегирев, М. С. Столяренко, ЖЭТФ 160, 689 (2021).
  27. З. А. Казей, В. В. Снегирев, М. С. Столяренко, ЖЭТФ 162, 767 (2022).
  28. З. А. Казей, В. В. Снегирев, Л. П. Козеева и др., ЖЭТФ 153, 782 (2018).
  29. Л. П. Козеева, М. Ю. Каменева, А. Н. Лавров и др., Неорганические материалы 49, 668 ( 2013).
  30. А. В. Алексеев, М. Ю. Каменева, Л. П. Козеева и др., Известия РАН. Сер. физическая 77, 173 (2013).
  31. M. Karppinen, M. Matveje, K. Salomaki et al., J. Mater. Chem. 12, 1761 (2002).
  32. З. А. Казей, В. В. Снегирев, М. С. Столяренко и др., ФТТ 64, 1766 (2022).
  33. G. H. Jonker and J. H. Van Santen, Physica. 16, 599 (1950).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences