Application of polarization fluorescence immunoassay for the determination of flunixin in milk
- 作者: Arutyunyan D.A.1, Mukhametova L.I.1, Shanin I.A.1, Kondakov S.E.1, Eremin S.A.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 80, 编号 6 (2025)
- 页面: 592–603
- 栏目: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 15.07.2025
- ##submission.dateAccepted##: 15.07.2025
- URL: https://archivog.com/0044-4502/article/view/687596
- DOI: https://doi.org/10.31857/S0044450225060061
- EDN: https://elibrary.ru/bclfur
- ID: 687596
如何引用文章
详细
The technique of polarization fluorescence immunoassay for the detection of residual amounts of nonsteroidal anti-inflammatory drug flunixin used for prophylaxis and treatment in veterinary medicine and animal husbandry was developed. The optimal analysis time was 15 min taking into account sample preparation, the linear range was 20-5000 ng/mL, and the limit of detection was 2 ng/mL. High selectivity of immunoreagents with respect to the antigen under study was shown; cross-reactivity coefficients with preparations having structural similarity to flunixin did not exceed 0.01 %. The method of flunixin determination in milk was tested by the injected-found method, it was shown that the application of the developed method of sample preparation allows effective detection of the investigated antigen within the linear range. These results indicate the possibility of using the developed technique with the use of polyclonal antibodies for express and sensitive determination of flunixin in milk.
全文:

作者简介
D. Arutyunyan
Lomonosov Moscow State University
Email: eremin_sergei@hotmail.com
Faculty of Chemistry
俄罗斯联邦, Leninskie gory, 1, building 3, Moscow 119991L. Mukhametova
Lomonosov Moscow State University
Email: eremin_sergei@hotmail.com
Faculty of Chemistry
俄罗斯联邦, Leninskie gory, 1, building 3, Moscow 119991I. Shanin
Lomonosov Moscow State University
Email: eremin_sergei@hotmail.com
Faculty of Chemistry
俄罗斯联邦, Leninskie gory, 1, building 3, Moscow 119991S. Kondakov
Lomonosov Moscow State University
Email: eremin_sergei@hotmail.com
Faculty of Chemistry
俄罗斯联邦, Leninskie gory, 1, building 3, Moscow 119991S. Eremin
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: eremin_sergei@hotmail.com
Faculty of Chemistry
俄罗斯联邦, Leninskie gory, 1, building 3, Moscow 119991参考
- Liu Y., Luo Y., Li W., Xu X., Wang B., Xu X., Hussain D., Chen D. Current analytical strategies for the determination of quinolone residues in milk // Food Chem. 2024. V. 430. Article 137072.
- Fatemi F., Alizadeh San, M., Noori S.M.A., Hashemi M. Status of antibiotic residues in milk and dairy products of Iran: A systematic review and meta-analysis // J. Environ. Health Sci. Eng. 2024. V. 22. P. 31.
- Roy A., Rana T., Shee A. Prevention and control of milk contamination, adulterants, antimicrobial residues, and agrochemicals / The Microbiology, Pathogenesis and Zoonosis of Milk Borne Diseases. Elsevier, 2024, p. 135.
- Hardee G.E., Smith J.A., Harris S.J. Pharmacokinetics of flunixin meglumine in the cow // Res. Vet. Sci. 1985. V. 39. P. 110.
- Kamal, M.F., Wilson A.C., Acquisto N.M., Spillane L., Schneider S.M. Acute encephalopathy with concurrent respiratory and metabolic disturbances in first known parenteral human administration of flunixin meglumine and acepromazine maleate // J. Emerg. Med. 2013. V. 45. P. 206.
- Blankenship M.M., Gregory S.M., Harty R.F. Flunixin horse pill use in human associated with peptic ulcer disease // Ann. Pharmacother. 2008. V. 42. P. 448.
- Wu X., Chen Q., Chou W.-C., Maunsell F.P., Tell L.A., Baynes R.E., Davis J.L., Jaberi-Douraki M., Riviere J.E., Lin Z. Development of a physiologically based pharmacokinetic model for flunixin in cattle and swine following dermal exposure // Toxicol. Sci. 2025. V. 203. P. 181.
- Papich M.G. Saunders Handbook of Veterinary Drugs. E-Book. 4th Ed. Elsevier Inc., 2016.
- Dudek K., Bednarek D., Ayling R.D., Kycko A., Reichert M. Preliminary study on the effects of enrofloxacin, flunixin meglumine and pegbovigrastim on mycoplasma bovis pneumonia // BMC Vet. Res. 2019. V. 15. Article 371.
- Lucacin E., Pinto-Neto A., Mota, M.F. Acco A., Souza M.I.L., Alberton J., Silva A.V. Effects of flunixin meglumine on reproductive parameters in beef cattle // Anim. Reprod. 2010. V. 7. P. 75.
- Wiloch E.E., Enomoto H., Smith L., Baynes R.E., Messenger K.M. Pharmacokinetics of intranasal and intramuscular flunixin in healthy grower pigs // J. Vet. Pharmacol. Ther. 2024. V. 47. P. 150.
- Giles C.B., Ferdous F., Halleran J.L., Yeatts J.L., Baynes R.E., Mzyk D.A. Flunixin meglumine tissue residues after intravenous administration in goats // Front. Vet. Sci. 2024. V. 10. Article 1341779.
- Smith D.J., Shelver W.L., Baynes R.E., Tell L., Gehring R., Li M., Dutko T., Schroeder J.W., Herges G., Riviere J.E. Excretory, secretory, and tissue residues after label and extra-label administration of flunixin meglumine to saline- or lipopolysaccharide-exposed dairy cows // J. Agric. Food Chem. 2015. V. 63. P. 4893.
- Maia A.L.R.E.S., Figueira L.M., Rocha M.S., Pinheiro J.B.D.S., Oliveira T.D.A., Brandão F.Z., Fonseca J.F., Oliveira M.E.F., Oliveira C.A.D., Souza-Fabjan J.M.G. The effect of flunixin meglumine on the premature regression of corpus luteum, recovery rate, and embryo production in superovulated dorper ewes // Anim. Reprod. Sci. 2024. V. 270. Article 107595.
- Mozaffari A.A., Derakhshanfar A. The gastrointestinal and myocardial adverse effects of flunixin meglumine, ketoprofen and phenylbutazone in Iranian Cashmere (Rayeni) goats: Clinical, hematological, biochemical, and pathological findings // Comp. Clin. Pathol. 2012. V. 21. P. 49.
- MacAllister C.G., Morgan S.J., Borne A.T., Pollet R.A. Comparison of adverse effects of phenylbutazone, flunixin meglumine, and ketoprofen in horses // J. Am. Vet. Med. Assoc. 1993. V. 202. P. 71.
- Максимальные уровни остатков ветеринарных препаратов в пищевых продуктах. Организация по стандартизации совета сотрудничества арабских государств Персидского залива (GSO). 2015.
- Silva F.W.L., Rodrigues J.G.A., Ferreira R.D.Q., Freitas J.C.C.D., Santelli R.E., Cincotto F.H. Manufacturing of a 3D-printed electrode cost-effective based on carbon black and polylactic acid for detection of flunixin anti-inflammatory // Electrochim. Acta. 2024. V. 507. Article 145117.
- Trabik Y.A., Ayad M.F., Mahmoud A.M., Abdullatif H.A., Michael A.M. Eco-friendly electrochemical assay of oxytetracycline and flunixin in their veterinary injections and spiked milk samples // BMC Chem. 2024. V. 18. Article 179.
- Zhu A.-L., Peng T., Liu L., Xia X., Hu T., Tao X.-Q., Wen K., Cheng L.-L., Li J.-C., Ding S.-Y., Cao X.-Y., Jiang H.-Y. Ultra-performance liquid chromatography–tandem mass spectrometry determination and depletion profile of flunixin residues in tissues after single oral administration in rabbits // J. Chromatogr. B. 2013. V. 934. P. 8.
- Jedziniak P., Olejnik M., Szprengier-Juszkiewicz T., Smulski S., Kaczmarowski M., Żmudzki J. Identification of flunixin glucuronide and depletion of flunixin and its marker residue in bovine milk // J. Vet. Pharmacol. Ther. 2013. V. 36. P. 571.
- Park S.-H., Lee Y.-H., Chu H., Hwang S.-D., Hwang K.-J., Choi H.-Y., Park M.-Y. Application of the microagglutination test for serologic diagnosis of human brucellosis // Osong Public Health Res. Perspect. 2012. V. 3. Article 19.
- Kissell L.W., Smith G.W., Leavens T.L., Baynes R.E., Wu H., Riviere J.E. Plasma pharmacokinetics and milk residues of flunixin and 5-hydroxy flunixin following different routes of administration in dairy cattle // J. Dairy Sci. 2012. V. 95. P. 7151.
- Stanley S.M.R., Owens N.A., Rodgers J.P. Detection of flunixin in equine urine using high-performance liquid chromatography with particle beam and atmospheric pressure ionization mass spectrometry after solid-phase extraction // J. Chromatogr. B: Biomed. Sci. App. 1995. V. 667. P. 95.
- Azzouz A., Ballesteros E. Gas chromatography–mass spectrometry determination of pharmacologically active substances in urine and blood samples by use of a continuous solid-phase extraction system and microwave-assisted derivatization // J. Chromatogr. B. 2012. V. 891–892. P. 12.
- Chen X., Peng S., Liu C., Zou X., Ke Y., Jiang W. Development of an indirect competitive enzyme-linked immunosorbent assay for detecting flunixin and 5-hydroxyflunixin residues in bovine muscle and milk // Food Agric. Immunol. 2019. V. 30. P. 320.
- Lin L., Jiang W., Xu L., Liu L., Song S., Kuang H. Development of IC-ELISA and immunochromatographic strip assay for the detection of flunixin meglumine in milk // Food Agric. Immunol. 2018. V. 29. Article 193.
- Li Q., Mi J., Bai Y., Ma Q., Zhang Y., Yang H., Wen K., Shen J., Wang Z., Yu X. Antibody production, immunoassay establishment, and specificity study for flunixin and 5-hydroxyflunixin // J. Agric. Food Chem. 2024. V. 72. P. 3160.
- Fan R., Zhang W., Jin Y., Zhao R., Yang C., Chen Q., He L., Chen Y. Lateral flow immunoassay for 5-hydroxyflunixin based on near-infrared fluorescence molecule as an alternative label to gold nanoparticles // Microchim. Acta. 2020. V. 187. Article 368.
- Ius A., Bacigalupo M.A., Meroni G., Pistillo A., Roda, A. Development of a time-resolved fluoroimmunoassay for phthalate esters in water // Fresenius J. Anal. Chem. 1993. V. 345. P. 589.
- Pourfarzaneh M., White G.W., Landon J., Smith D.S. Cortisol directly determined in serum by fluoroimmunoassay with magnetizable solid phase // Clin. Chem. 1980. V. 26. P. 730.
- Long G.L., Winefordner J.D. Limit of detection a closer look at the IUPAC definition // Anal. Chem. 1983. V. 55. P. 712A.
- Hendrickson O.D., Taranova N.A., Zherdev A.V., Dzantiev B.B., Eremin S.A. Fluorescence polarization-based bioassays: New horizons // Sensors. 2020. V. 20. Article 7132.
- Mukhametova L.I., Eremin S.A. Fluorescence polarization assays for organic compounds in food safety // Front. Biosci.-Elite. 2024. V. 16. Article 4.
- Zhang H., Yang S., De Ruyck K., Beloglazova N.V., Eremin S.A., De Saeger S., Zhang S., Shen J., Wang Z. Fluorescence polarization assays for chemical contaminants in food and environmental analyses // TrAC, Trends Anal. Chem. 2019. V. 114. P. 293.
补充文件
