Temperature dependences of conductivity of uniaxially strained topological insulator TaSe3 under different methods of creation of deformation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of studies of the influence of uniaxial strain on the conductivity of the topological insulator TaSe3 are presented. Using the application of controlled elongation, the dependence of resistance at room temperature on the strain value was measured up to record strain values of ε = 2%. Using the elastic substrate bending technique, the measurements are extended towards the compressive strain. It was found that the dependence of resistance on deformation is described by the relation R(ε) = R0 ехр(–аε) at а ≈ 102. The influence of uniaxial strain on the temperature dependences of conductivity using various methods of creating strain was studied. When creating a strain of more than 0.5 ± 0.1% by the method of controlled elongation, the material goes into a dielectric state in the temperature range from helium to 300 K; at deformations of more than 1% at temperatures of 50 ... 70 K, a maximum resistance appears, associated with partial relaxation of uniaxial deformation in the volume of the sample. It is shown that the use of the widely used technique of bending the substrate to create strain can lead to the appearance of artifacts in the temperature dependences of the conductivity of the samples.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Minakova

Kotelnkov Institute of Radioengineering and Electronics of RAS

Email: serzz@cplire.ru
Ресей, Mokhovaya Str. 11, Build.7, Moscow, 125009

R. Lukmanova

Kotelnkov Institute of Radioengineering and Electronics of RAS; HSE University

Email: serzz@cplire.ru

Physics Department

Ресей, Mokhovaya Str. 11, Build.7, Moscow, 125009; Myasnitskaya Str. 20, Moscow, 101000

I. Cohn

Kotelnkov Institute of Radioengineering and Electronics of RAS; HSE University

Email: serzz@cplire.ru

Physics Department

Ресей, Mokhovaya Str. 11, Build.7, Moscow, 125009; Myasnitskaya Str. 20, Moscow, 101000

S. Zaitsev-Zotov

Kotelnkov Institute of Radioengineering and Electronics of RAS; HSE University

Хат алмасуға жауапты Автор.
Email: serzz@cplire.ru

Physics Department

Ресей, Mokhovaya Str. 11, Build.7, Moscow, 125009; Myasnitskaya Str. 20, Moscow, 101000

Әдебиет тізімі

  1. Sambongi T., Yamamoto M., Tsutsumi K. et al. // J. Phys. Soc. Jap. 1977. V. 42. № 4. P. 1421.
  2. Tritt T. M., Stillwell E. P., Skove M. J. // Phys.Rev. 1986. V. 34. № 10. P. 6799.
  3. Nie S., Xing L., Jin R. et al. // Phys. Rev. B. 2018. V. 98. № 12. P. 125143.
  4. Lin C., Ochi M., Kuroda K. et al. // Nature Mater. 2021. V. 20. № 8. P. 1093.
  5. Hyun J., Jeong M. Y., Jung M. et al. // Phys. Rev. B. 2022. V. 105. № 11. P. 115143.
  6. Zhang Z., Li L., Horng J. et al. // Nano Lett. 2017. V. 17. № 10. P. 6097.
  7. Zybtsev S. G., Pokrovskii V. Ya. // Physica B: Condensed Matter. 2015. V. 460. P. 34.
  8. Haen P., Monceau P., Tisser B. et al. // Proc. 14 Int. Conf. on Low Temperature Physics. Otaniemi. August 14–20 Aug.1975 /Ed by M. Krusius, M. Vuorio. Amsterdam: North Holland Publishing Company, 1975. V. 5. Р. 445.
  9. Chaussy J., Haen P., Lasjaunias J. C. et al. // Solid State Commun. 1976. V. 20. № 8. P. 759.
  10. Yang J., Wang Y. Q., Zang R. R. et al. Appl. Phys. Lett. 2019. V. 115. № 3. P. 033102.
  11. Pokrovskii V. Ya., Zybtsev S. G. // Phys. Rev. B. 2016. V. 94. № 11. P. 115140.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Methods for creating uniaxial deformation used in this work: a, b — methods of controlled sample elongation; c — method of substrate bending; d — method of stretching the substrate with a fixed sample.

Жүктеу (9KB)
3. Fig. 2. Top view of the multilayer structure used to create uniaxial deformation by bending (photograph taken before deposition of epoxy resin): gray areas are the deposited indium contact layer, dark areas are the insulating Kapton layer visible after indium removal; a micron-thick sample is visible in the center; substrate size is 5 × 15 mm2.

Жүктеу (24KB)
4. Fig. 3. Dependences of the relative change in resistance of TaSe3 at room temperature on the sample elongation, obtained by the direct tension method. Sample parameters: 1 — L = 8.4 mm, s = 11.7 μm2, first measurement; 2 — the same sample, repeated measurement; 3 — L = 8.25 mm, s = 13.1 μm2; 4 – L = 3.1 mm, s = 6.5 μm2; 5 — L = 4.15 mm, s = 8.7 μm2; 6 — L = 4.0 mm, s = 24.3 μm2.

Жүктеу (14KB)
5. Fig. 4. Temperature dependences of resistance normalized to the room value of an undeformed sample, R/R0, for different sample deformations: ε = 1.6 (1), 1.4 (2), 1.2 (3), 1.1 (4), 1.0 (5), 0.9 (6 and 7), 0.7 (8), 0.2 (9), 0 (10), –0.5 (11), –0.7 (12), –0.8% (13); curves 1–10 were obtained by the controlled bending of the sample, 11–13 – by the bending of the substrate; negative values ​​of ΔR/R0 correspond to compressive deformation.

Жүктеу (24KB)
6. Fig. 5. Dependences of the conductivity of TaSe3 crystals at room temperature on the magnitude of deformation, obtained by the direct deformation method (1 and 2) and the substrate bending method (3 - tension, 4 - compression); straight line 5 corresponds to the equation R(ε) = R0 exp(100 ε).

Жүктеу (14KB)
7. Fig. 6. Temperature dependences of the conductivity of TaSe3 crystals at different deformations obtained by bending the substrate: ε = 0 (1), 0.6 (2), 1.1 (3), 1.4 (4) and 1.75% (5).

Жүктеу (13KB)

© Russian Academy of Sciences, 2024