Mechanism of phenylalanine destruction under the influence of uv radiation and reactive oxygen species
- 作者: Piskarev I.M.1
-
隶属关系:
- D.V. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University named after M.V. Lomonosov
- 期: 卷 59, 编号 3 (2025)
- 页面: 167-173
- 栏目: ФОТОХИМИЯ
- URL: https://archivog.com/0023-1193/article/view/685828
- DOI: https://doi.org/10.31857/S0023119325030055
- EDN: https://elibrary.ru/arefcw
- ID: 685828
如何引用文章
详细
The degradation of phenylalanine in an acidic aqueous solution (pH 3) with a concentration of 1.33 × 10–3 mol/L under the action of UV radiation of a 253.7 nm mercury lamp, hydroxyl radicals generated by cold plasma of a corona electric discharge, and hydroperoxyl radicals formed in water under the action of pulsed radiation of a hot plasma was studied. The degradation product identified by the fluorescence method is tyrosine. The quantum yields of phenylalanine degradation and tyrosine formation in solutions saturated and depleted in atmospheric oxygen were determined. Possible reaction mechanisms were considered.
全文:

作者简介
I. Piskarev
D.V. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University named after M.V. Lomonosov
编辑信件的主要联系方式.
Email: i.m.piskarev@gmail.com
俄罗斯联邦, Moscow
参考
- Bruggeman P., Locke B.R., Gardenies H. et al. (41 authors) // Plasma Sources Sci. Technol. 2016. V. 25. 053002.
- Locke B.R., Mededovic S., Lukes P. // Plasma Process and Polymers. 2024. e2400207. https://doi.org/10.1002/ppap.202400207
- Matthews D.E. // J. Nutrition. 2007. V. 137. 1549S.
- Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. // Биоорганическая химия. 2020. Т. 46. № 5. С. 466.
- Griffits H.R., Moller L., Bartosz G. et al. // Mol. Aspects Med. 2002. V. 23. P. 101.
- Fitzpatrick P.F. // Biochemistry. 2003. V. 12. № 48. P. 14083.
- Hsu J.W., Jahoop F., Butte N.F., Heird W.C. // Pediat. Res. 2011. V. 69. № 4. P. 341.
- Srivastava A., Srivastava N., Dohare R.K. // J. Phys. Org. Chem. 2024. https://doi.org/10.1002/poc.4669
- Pattison D.I., Rahmanto A.S., Davies M.J. // Photochem. Photobiol. Sci. 2012. V. 11. P. 38.
- Weng Y., Su C-J., Jiang H., Chiang C.-W. // Sci. Rep. 2022. V. 8. № 12. 18994. https://doi.org/10.1038/s41598-022-23481-6
- Salmahaminati, Roca-Sanjuan D. // ACS Omega. 2024. V. 9. P. 35356.
- Scappini F., Capobianco F., Casadei R. et al. // Int. J. of Astrobiol. 2007. V. 6. P. 4.
- Jin F., Leitich J., von Sonntag C. // J. of Photochem. Photobiol. A: Chemistry. 1995. V. 85. P. 101.
- Kopec K., Ryzko A., Major R. et al. // ACS Omega. 2022. V. 7. 39234.
- Tatsuno I., Niimi Y., Tomita M. et al. // Sci. Rep. 2021. V. 11. P. 22310. https://doi.org/10.1038/541598-021-01543-5
- Rosenzweig Z., Garcia J., Thompson G.L., Perez L.J. // PLoS ONE. 2024. V. 19. № 11. E0311232.
- Piskarev I.M. // High Energy Chem. 2024. V. 58. № 5. P. 480.
- Коновалов В.П., Сон Э.Е. Химия плазмы / под ред. Е.М. Смирнова. М. Энергоатомиздат, 1987. Вып. 14. С. 194.
- Александров Н.П., Высикайло Ф.И., Исламов Р.Ш. и др. // Теплофизика высоких температур. 1981. Т. 19. № 1. С. 22.
- Piskarev I.M. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 4. P. 1171.
- Пискарев И.М. // Химия высоких энергий. 2016. Т. 50. № 5. С. 449.
- Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986.
- Luo Yu-Ran. Handbook of bond dissociation energies in organic compounds. Boca Raton, London, New York, Washington: CRC Press LLC, 2003. P. 1–94.
- Рыбакова Л.П., Алексанян Л.Р., Капустин С.И., Бессмельцев С.С. // Вестник гематологии. 2022. Т. 18. № 4. С. 26.
补充文件
